In the latest MIT Technology Review article, “The Startup Behind NYC’s Plan to Replace Phone Booths with 7,500 Connected Kiosks“, Elizabeth Woyke interviews Prof. Chow about the role that public kiosks can play to relay information.
In the latest MIT Technology Review article, “The Startup Behind NYC’s Plan to Replace Phone Booths with 7,500 Connected Kiosks“, Elizabeth Woyke interviews Prof. Chow about the role that public kiosks can play to relay information.
Recently, TLC announced using Via’s software to enable yellow taxi sharing (https://lnkd.in/dxf-MU9) in favor of a taxi sharing policy. Our latest NSF-funded paper with researchers from NYU Tandon, CUSP, and Courant (Ziyi Ma, Matthew Urbanek, Maria Alejandra Pardo Baquero, Xuebo Lai), now in press, quantifies this benefit for riders that use taxi to access the airport (~10% improvement in consumer surplus) and demonstrate how different matching policies can significantly affect the spatial distribution of that benefit.
Ziyi Ma was supported by the NYU Undergraduate Summer Research Program. Joseph Chow was partially supported by National Science Foundation grant CMMI-1634973. The JFK airport taxi mode choice survey was shared by PANYNJ, which is gratefully acknowledged.
The open access paper can be found here: http://www.sciencedirect.com/science/article/pii/S2046043017300217.
The latest paper, a joint effort between Yueshuai Brian He, Prof. Chow, and U. Toronto researcher Dr. Mehdi Nourinejad, has been accepted for presentation in the IEEE Intelligent Transportation Systems Conference held in Yokohama in fall 2017. The paper topic, “A Privacy Design Problem for Sharing Transport Service Tour Data”, investigates a method to protect the privacy of a private transport operator’s tour data by anonymizing it under the constraint of providing sufficiently accurate user performance metrics for public use. This work should be increasingly important as public agencies and private operators like Via and Lyft seek out data sharing arrangements to support smart cities.
This research is supported by NSF CAREER grant CMMI-1652735.
A preprint of the paper can be found here: https://www.researchgate.net/publication/318451988_A_Privacy_Design_Problem_for_Sharing_Transport_Service_Tour_Data
Our work on simulation-based evaluation of Mobility as a Service as a “2-sided market” is now published in TR Part B. The goal in this work is to develop a tool that can compare “apples to oranges” where the MaaS operator’s decisions and policies are also dependent on user interaction–whether at “within day” level or at “day-to-day” level of dependency. For example, this would allow a city agency to compare the welfare effects of a TNC with a particular surge pricing policy (within day dependency) with another scenario where an EV car sharing company may alter fleet size, composition, pricing policies over time (day-to-day).
Dr. Djavadian was supported by the Canada Research Chairs program and an NSERC Discovery Grant. Prof. Chow was partly supported by the C2SMART University Transportation Center. An early version of this work was presented at IATBR 2015 in Windsor, UK.