About SMaPP
The spectacular scientific opportunities afforded by the use of social media are readily apparent when we consider the richness and precision of data on participation in elections, protests, riots, and other spontaneous political events. We are constructing comprehensive data sets of incoming and outgoing social media messages using systematically structured formats that are ideally suited to machine learning methods. We plan to integrate information on social network connectivity and a vast array of metadata on individuals and their social contacts. By developing new methods to harvest and combine these data sources effectively, it will be possible to transform the scientific study of social and political attitudes and behavior.
Every time individuals use social media, they leave behind a digital footprint of what was communicated, when it was communicated, and, to whom it was communicated. Typically, such precise estimates of these variables are available only to laboratory investigators working in artificial settings. To our knowledge, no previous research team has successfully used fine-grained social influence data such as these to predict consequential behavioral outcomes, such as attendance at a given protest or rally or the casting of a vote in an election. We are also conducting panel surveys, which are essential for drawing causal inferences about the cognitive and motivational processes whereby social media use facilitates political participation.
Our overarching goal is to forge an interdisciplinary collaboration that examines the impact of social media on political behavior by iterating through stages of model development, testing, refinement, and validation. First, from social psychology and political science we derive fundamental hypotheses about how, why, and when social media affects citizens’ cognitions and motivations with respect to political participation. Second, we express these questions as empirically testable hypotheses derived from behavioral models (e.g., with quantitative response and predictor variables). And third, drawing from biology and computer science we adapt sophisticated computational methods of approximate inference and machine learning (adapting methods developed for the analysis of Systems Biology data) to evaluate our behavioral models using extremely large social media and social network datasets.
SMaPP-Global: See as well the website of SMaPP-Global, an international collection of scholars studying social media and politics affiliated with the SMaPP lab and supported by the NYU Global Institute of Advanced Study. SMaPP-Global holds bi-annual conferences at NYU-NY (in the fall) and at NYU global sites (in the spring).
| Sanovich, Sergey, Denis Stukal, and Joshua A. Tucker. 2017. Turning the Virtual Tables: Government Strategies for Addressing Online Opposition with an Application to Russia. Comparative Politics 50(3): 435-54. (Includes Online Appendix). |
| Jost, J. T., Barberá P., Bonneau R., Langer M., Metzger M., Nagler J., Sterling J., Tucker J.T. 2018. “How Social Media Facilitates Political Protest: Information, Motivation, and Social Networks”. Advances in Political Psychology, 39(S1): 85-118. |
| Denis Stukal, Sergey Sanovich, Richard Bonneau, and Joshua A. Tucker. 2017. “Detecting Bots on Russian Political Twitter.”Big Data 5(4): 310-324. (Special Issue on Computational Propaganda) |
| Siegel, Alexandra. 2018. “Twitter Wars: Sunni-Shia Conflict and Cooperation in the Digital Age”. In Frederic Wehrey, Beyond Sunni and Shia: The Roots of Sectarianism in a Changing Middle East (pp. 157-180). London: Hurst Publishers. |
| Siegel, Alexandra and Joshua A. Tucker. 2018. “The Islamic State’s Information Warfare: Measuring the Success of ISIS’ Online Strategy”. Journal of Language and Politics (Forthcoming). |

