Tag Archives: Risk

NYU FRE Lecture Series: Yuewu Xu

NYU Tandon School of Engineering

Dear All,

You are cordially invited to attend the last FRE Lecture Series for the Fall 2019 semester on Thursday, December 5th in the Event MakerSpace (6 MetroTech Center, Brooklyn, NY) at 6:00 p.m.

Dr. Yuewu Xu will present a talk on the following topic:

Title:

A New Approach to Recover Risk-Neutral Distributions From Options

Abstract

This paper develops a novel model-free representation of the risk-neutral density in terms of market observed options prices by combining an exact series representation of the Dirac Delta function and the Carr-Madan spanning formula. Compared to the widely used method for obtaining the risk-neutral densities via the Breeden-Litzenberger device, our method yields risk-neutral densities that are model-free, automatically smooth, in closed-form, and do not involve operations such as interpolation of the implied volatilities. The closed-form feature of our new representation makes it ideal for many potential applications, including a new model-free representation of the local volatility function in the Dupire’s local volatility model. The validity of our method is demonstrated through simulation studies as well as an empirical application using real options data. Extension of the method to higher dimensions is also established by extending the Carr-Madan spanning formula.

JEL Classification: G12, G13, G14, C58

Keywords: Risk-neutral distribution, option-implied information, Carr-Madan formula, Dirac Delta function.

Bio:

Dr. Yuewu Xu is currently an associate professor of finance at the Gabelli School of Business, Fordham University. His research interests are in the areas of theoretical and empirical asset pricing, and financial econometrics. Dr. Xu’s research articles have appeared in leading academic journals such as the Journal of Finance, Journal of Financial Economics, Journal of Financial and Quantitative Analysis, and the Journal of Econometrics, and his works have been presented in the conference of American Finance Association and the Western Finance Association. Prior to joining Fordham, Dr. Xu was director of investment strategy and research at a major asset-management firm in New York where he worked for five years.

Prof. Xu holds a PhD in finance and a PhD in statistics from Yale University.

We look forward to having you join us for the talk and refreshments.

NYU FRE Lecture Series: Ben Steiner

NYU Tandon School of Engineering

Dear All,

You are cordially invited to attend the FRE Lecture Series on Thursday, November 21st in LC 400 Dibner Library – 4th Floor (5 MetroTech Center, Brooklyn, NY) at 6:00 p.m.

Dr. Ben Steiner will present a talk on the following topic:

Title:

Model Risk Management for Trading Strategies Built with Deep Learning

Abstract

Deep Learning has demonstrated spectacular success in domains outside finance and offers tantalizing potential for developing trading strategies.

This presentation reviews the basics of Deep Learning and highlights when it should (or should not) be used.

Traditionally, Model Risk Management (MRM) consists of three elements:

  1. Conceptual Soundness – assessing the quality of the model design and construction;
  2. Implementation Validation – confirming that the model is correctly implemented; and
  3. Ongoing Monitoring – ensuring that the model is performing as intended.

In the context of trading strategies, ‘Conceptual Soundness’ can be viewed as the decision to start trading a strategy while ‘Ongoing monitoring’ is a requirement to anticipate when to stop.

Using deep learning to create trading strategies presents a number of challenges. Paramount is the non-stationary nature of financial markets: out-of-sample data is most likely drawn from a different distribution to training data. The key question is recalibration frequency: recalibrating too fast results in fitting to noise, too slowly and a model is trained on stale data. Either way, trading the sub-optimal strategy results in losses. A second challenge is interpretation. Without knowing why a strategy is performing, limited information is available for risk budgeting. The third challenge is ensuring deep learning is not simply an expensive way of rediscovering well-known factors.

In the presence of these three challenges, model risk management can still be used for evaluating deep learning trading strategies. No simple test can discriminate between good and bad strategies; rather a suite of analysis can be used to understand strategy behavior and characteristics. Ongoing monitoring is then critical to understand when live trading is not performing as intended. In this respect, evaluating deep learning strategies is an evolution of how quant trading strategies have always been evaluated. However, the increased ease with which deep learning strategies can be created now prompts even greater diligence in their systematic evaluation and ongoing monitoring.

Bio:

BNP Paribas Asset Management

In his current role, Ben handles chief-of-staff and business management responsibilities within the Global Fixed Income division of BNP Paribas Asset Management

Earlier in his career, he held roles of Head of Model Development, Portfolio Manager & Quant Researcher at investment managers and quantitative hedge funds. This experience covered models & investment strategies in multiple asset classes ranging from the traditionally illiquid (Private Debt and Real Estate) to the more liquid markets (Non-traditional Bond; Managed Futures; Global Macro and Equity Long/Short).

Prior to his current role, Ben was Head of Model Development at CIT where he managed the team researching and implementing credit models. Earlier in his career, he was a Portfolio Manager and Senior Quant Researcher at BNP and, before that, Research Manager at Aspect Capital in London. Ben started his career at Deutsche Bank in quantitative research and portfolio construction.

He holds a BA in Economics from the University of Manchester and an MSc in Mathematical Finance from Imperial College, London.
In 2013, Ben was appointed to the Board of Directors of the Society of Quantitative Analysts (SQA) and has given recent lectures on machine learning and model risk management at Columbia & NYU.

We look forward to having you join us for the talk and refreshments.

Please note that Dr. Yuexu from Fordham University will present the final lecture this semester on December 5th. Mark your calendars.

NYU FRE Lecture Series: Aparna Gupta

NYU Tandon School of Engineering

Dear All,

You are cordially invited to attend the FRE Lecture Series on Thursday, November 7th in LC 400, Bern Dibner Library, 4th Floor (5 MetroTech Center), at 6:00PM.

Dr. Aparna Gupta will present a talk on the following topic:

Title:

Identifying the Risk Culture of Banks Using Machine Learning

Abstract:

We introduce text mining and unsupervised machine-learning algorithms to define the risk culture for U.S. bank holding companies and examine the relation between risk culture and performance. Applying principal component analysis on textually extracted features from 10-K filings identifies uncertainty, litigious and constraining sentiments among risk culture features to be significant in defining risk culture of banks. Cluster analysis of these features proposes three distinct risk culture clusters which we label as good, fair and poor. Consistent with regulatory expectations, sound risk culture in banks is characterized by high profitability ratios, bank stability, lower default risk and good governance.

Bio:

Aparna Gupta is an associate professor of quantitative finance and director of the Center for Financial Studies in the Lally School of Management at Rensselaer Polytechnic Institute. She has been the founding director of the MS program in Quantitative Finance and Risk Analytics at RPI, and holds a joint appointment in industrial and systems engineering in the School of Engineering at RPI. Dr. Gupta has been a visiting researcher at US SEC in Washington DC for two years. Her research interest is in financial decision support, risk management, and financial engineering. She applies mathematical modeling, machine learning and financial engineering techniques for risk management both in technology-enabled network services, such as, energy and renewable energy systems, communication systems, and technology-enabled service contracts, as well as risk management in the inter-connected financial institutions and financial markets. She has worked on several US National Science Foundation funded research projects in financial innovations for risk management. Dr. Gupta’s research has been published in top quantitative finance and operations research journals, and has been awarded various recognitions, including 2018 best paper award of the Financial Management Association and 2019 best paper award at the 17th FRAP Conference. She is the author of the book, Risk Management and Simulation. Dr. Gupta is a member of WFA, FMA, INFORMS, GARP and IAQF, and serves on the editorial board of several quantitative finance and analytics journals. She earned her doctorate from Stanford University and her B.Sc. and M.Sc. degrees in Mathematics from the Indian Institute of Technology, Kanpur.

We look forward to having you join us for the talk and refreshments. Please mark your calendars.

NYU FRE Lecture Series: Pasquale Cirillo

NYU Tandon School of Engineering

Dear All,

You are cordially invited to attend the FRE Lecture Series on Thursday, October 31st, 6 MetroTech Center),at 6:00PM.

Dr. Pasquale Cirillo will present a talk on the following topic:

Title:

The Distortions of Finance

Abstract:

Finance is a world of distortions. Many tools we use, many findings we know are actually the result of a distortion. Take the well-known Black-Scholes model: the probability to be in the money at maturity under P and Q is a distortion. And the price of a European call? Another distortion. Consider risk management, think about the expected shortfall, and—guess what—a distortion. And if you think that copulas are immune, you are wrong, plenty of distortions there. Model risk is often represented in terms of distortions. So, let’s talk about distortions, and in particular about the special class of Lorenz transforms.

Bio:

Pasquale Cirillo is associate professor of applied probability at Delft University of Technology, The Netherlands, where he also coordinates the Financial Engineering Specialization of the Master in Applied Mathematics. His research interests include quantitative risk management (in particular credit and operational risk), extreme value theory and combinatorial stochastic processes. Besides the academic career, as a statistical consultant, he has collaborated with international institutions, like the World Bank and the European Food Safety Authority, and many private companies and banks.
His MOOCs in risk management have been attended by more than 110’000 students from all over the world. He is a proud amateur cook.

We look forward to having you join us for the talk and refreshments. Please mark your calendars.

NYU FRE Lecture Series: John Crosby

NYU Tandon School of Engineering

Dear All,

You are cordially invited to attend the FRE Lecture Series on Thursday, October 17th in the Pfizer Auditorium  on the 1st Floor of the Dibner Library (5 MetroTech Center) at 6PM.

Dr. John Crosby will present a talk on the following topic:

Title:

Unspanned Risks, Negative Local Time Risk Premiums, and Empirical Consistency of Models of Interest-Rate Claims

Abstract:

We formalize the notion of local time risk premium in the context of a theory in which the pricing kernel is a general diffusion process with spanned and unspanned components. We derive results on the expected excess return of options on bond futures. These results are organized around our new empirical finding that the average returns of out-of-the-money puts and calls on Treasury bond futures are both negative. Our theoretical reconciliation warrants a negative local time risk premium, and our treatment considers models with market incompleteness and sources of volatility uncertainty. Our results provide a way to differentiate between the myriad of term-structure models.

Bio:

John gained a first class honours degree in Mathematics at Girton College, Cambridge University before going on to study Electrical Engineering at University College, Oxford University. He was in investment banking (Barclays, Lloyds, UBS) for some 20 years working as a quant, heading quant teams and trading foreign exchange options.
More recently, John has moved into academia. He is at the Smith School of Business, University of Maryland. He is best known for publishing a number of papers on the theme of international risk sharing, exchange rates, term-structure modelling and incomplete markets (for example, one paper recently published at the Review of Financial Studies).

We look forward to having you join us for the talk and refreshments. Please mark your calendars.

NYU FRE Lecture Series: Mykhaylo Shkolnikov

NYU Tandon School of Engineering

Dear All,

You are cordially invited to attend the NYU FRE Lecture Series on Thursday, October 10th in the Dibner Auditorium
(5 MetroTech Center – 1st Floor) at 6 p.m.

Dr. Mykhaylo Shkolnikov will present a talk on the following topic:

Title:

From Systemic Risk to Supercooling and Back

Abstract:

I will explain how structural models of default cascades in the systemic risk literature naturally lead to the supercooled Stefan problem of mathematical physics. On the one hand, this connection allows us to uncover a notion of global solutions to the supercooled Stefan problem, which we analyze in detail. On the other hand, the supercooled Stefan problem formulation allows to provide a truly intrinsic definition of systemic crises and to characterize the fragile states of the economy. Time permitting, I will also explain the network and game extensions of the problem. Based on a series of works with Francois Delarue and Sergey Nadtochiy.

Bio:

Mykhaylo (Misha) Shkolnikov is currently an assistant professor in the Department of Operations Research and Financial Engineering, an affiliated faculty member with the Bendheim Center for Finance, and an associated faculty member with the Program in Applied & Computational Mathematics (PACM) at Princeton University. Prior to that, he was an assistant professor in the Department of Mathematics at Princeton and a postdoctoral fellow at the University of California, Berkeley and MSRI. He earned his PhD in mathematics at Stanford University. Shkolnikov is the recipient of the 2018 Erlang Prize from the Applied Probability Society of INFORMS and of the 2019 Early Career Prize from the SIAM Activity Group on Financial Mathematics and Engineering. His research focuses on stochastic portfolio theory (and, more generally, optimal investment), interacting particle systems, random matrix theory, as well as probabilistic approaches to partial differential equations.

We look forward to having you join us for the talk and refreshments. Please mark your calendars.