Tag Archives: Machine Learning

NYU Courant: Mathematical Finance Seminar

The mathematical finance seminar covers a broad range of topics in mathematical and quantitative finance, including:

  • Data science and machine learning in finance
  • Big data and econometric techniques
  • Quantitative finance
  • Portfolio and risk management
  • Pricing and risk models
  • Regulation and regulatory models
  • Trading strategies and back testing

Presenters include invited visitors and NYU Courant faculty. A seminar presentation often covers original research. The seminar meets monthly on Tuesdays at 5:30 pm to 7 pm in room 1302 of Warren Weaver Hall at 251 Mercer Street, unless specified otherwise. Please make sure to check the exact schedule and room assignment. Talks generally last an hour, followed by networking.

Seminars are open to the public.

The seminar coordinator is Petter Kolm (email: petter DOT kolm AT nyu DOT edu).

Seminar Organizer(s): Petter Kolm


Tuesday, October 29, 2019
5:30PM, Warren Weaver Hall 1302
Relearning the Lessons of the Global Financial Crisis
David M. Rowe, President of David M. Rowe Risk Advisory

October 16, 2019: IAQF/Thalesians – Systematic Strategies and Machine Learning

IAQF Upcoming Event

Systematic Strategies and Machine Learning

 

Kevin Noel

A Talk by
Kevin Noel

Wednesday, October 16

5:45 PM Registration
6:00 PM Seminar Begins
7:30 PM Reception

Abstract

Systematic strategies have a long history in the field of investment area, encompassing the high-frequency ones as well as low-frequency strategies. Over the last decade, the rise of ETF, Robo-allocator made them a popular choice compared to discretionary strategies. More recently, progresses in machine learning renew the theoretical development in that field as well as highlight new perspectives.

Here, we focus on low-frequency strategies and first recall briefly the history of such strategies through a common statistical framework (dynamic basket allocation): Markowitz, CPPI, Buy-Write, Vol. Control, Risk Budgeting, Factor-based, Arbitrage based,… We illustrate those strategies through actual use cases and highlight the importance of underlying risk framework.

In the second part, we focus on the various machine learning methods available to develop or optimize systematic strategies. Especially, we underline the paradigm difference with traditional statistical/stochastic methods by deepening on the fundamental concept of learning vs calibration, as well as the role of prior knowledge.

In the final part, we will evoke some potential future research to go beyond the paradigm of covariance matrix: neural control, graph representation learning.

Biography

Kevin Noel is graduated from Ecole Centrale, in financial mathematics and data mining. From 2007, He worked at BNP Paribas and then at US bank Merrill Lynch on developing advanced statistical framework and risk solutions for Institutional Investor systematic strategies in Asia/Japan. Among those solutions: volatility based, arbitrage Premium, dynamic replication of mutual/ hedge funds, long short… Then, at ING Japan, he co-leads in Re-Insurance hedging/valuation of large scale Japanese Variable Annuities, modeling complex insurance derivatives product, as well as complex modeling of optimal end-user decision process. For the latter, he started to develop machine learning and data analytics for semi-structured, unstructured data, decided to pursue research in Machine Learning/Deep learning applied to optimality or in information processing. He joined Rakuten as Principal Data Scientist and is working on solutions for unstructured or semi-structured Big Data.

Acknowledgments
Special thanks to the Fordham University Gabelli School of Business for hosting and sponsoring the seminar.

About the Series
The IAQF’s Thalesians Seminar Series is a joint effort on the part of the IAQF (www.iaqf.org) and the Thalesians (www.thalesians.com). The goal of the series is to provide a forum for the exchange of new ideas and results related to the field of quantitative finance. This goal is accomplished by hosting seminars where leading practitioners and academics present new work, and following the seminars with a reception to facilitate further interaction and discussion.

Registration Fees:

Complimentary for IAQF members
Login and Register

Thalesians Members can register for $25

Non-Members: $25.00 by registering

October 2, 2019: FinTech Seminar Series

Join us on October 2nd for a discussion about Dynamic Replication and Hedging: A Reinforcement Learning Approach presented by Petter Kolm.

About this Event

In this talk we address the problem of how to optimally hedge an options book in a practical setting, where trading decisions are discrete and trading costs can be nonlinear and difficult to model.

Based on reinforcement learning (RL), a well-established machine learning technique we propose a model that is flexible, accurate and very promising for real-world applications. A key strength of the RL approach is that it does not make any assumptions about the form of trading cost. RL learns the minimum variance hedge subject to whatever transaction cost function one provides. All that it needs is a good simulator, in which transaction costs and options prices are simulated accurately.

This is joint work with Gordon Ritter.

Published Paper:
https://jfds.iijournals.com/content/1/1/159

View Peter Kolm’s Profile.

 

Location

Manhattan Institute of Management
2 Washington Street
17th Floor
New York, NY 10004

September 24, 2019: Cornell-Citi Financial Data Science Seminars: Miquel Noguer i Alonso (Artificial Intelligence Finance Institute)

You and your colleagues are invited to attend the Cornell – Citi Financial Data Science Seminars at the Bloomberg Center at Cornell Tech, Room 061/071. Through the talks this semester, we are excited to collaborate with Citi in highlighting machine learning applications in finance.

2 West Loop Road
New York, NY 10044

All seminars are from 6:00 pm to 7:00 pm. This seminar will be recorded, and you can watch the livestream.

Seminars are free. However, registration is required for NYC attendees as seating is limited.

 

Date: Tuesday, September 24, 2019
Time: 6:10 pm – 7:25 pm
Speaker: Miquel Noguer I Alonso, PhD | Artificial Intelligence Finance Institute
Title: “Latest Developments in Deep Learning in Finance”

Miguel Noguer i Alonso

Miquel Noguer i Alonso is a financial markets practitioner with more than 20 years of experience in asset management, and he is the Founder of Artificial Intelligence Finance Institute. Head of Development at Global AI (Big Data Artificial Intelligence in Finance company) and Head on Innovation and Technology at IEF. He worked for UBS AG (Switzerland) as Executive Director. He is a member of European Investment Committee for the last 10 years. He worked as a Chief Investment Officer and CIO for Andbank from 2000 to 2006. He started his career at KPMG.

He is Adjunct Professor at Columbia University teaching Asset Allocation, Big Data in Finance and Fintech. He is also Professor at ESADE teaching Hedge Fund, Big Data in Finance and Fintech. He taught the first Fintech and Big Data course at the London Business School in 2017.

He received an MBA and a Degree in business administration and economics in ESADE in 1993. In 2010 he earned a PhD in quantitative finance with a Summa Cum Laude distinction (UNED – Madrid Spain). He completed a Postdoc in Columbia Business School in 2012. He collaborated with the Mathematics department of Fribourg during his PhD. He also holds the Certified European Financial Analyst (CEFA) 2000.

His research interests range from asset allocation, big data, machine learning to algorithmic trading and Fintech. His academic collaborations include a visiting scholarship in Columbia University in 2013 in the Finance and Economics Department, in Fribourg University in 2010 in the mathematics department, and giving presentations in Indiana University, ESADE and CAIA and several industry seminars like the Quant Summit USA 2017 and 2010.

We hope to see you there!

The Cornell-Citi Team

Directions to CFEM & Citi @CornellTech on Roosevelt Island: Take the Tram or the F train to Roosevelt Island; walk to the left along the East River until you see a modern, bronze building, which is the Bloomberg Center. Check in at the front desk and go downstairs to the basement, where Room 061/071 will be straight ahead on your left.

**Please excuse any duplication of this announcement

Upcoming CFEM Events

October 8, 2019
Speaker & Title TBD

November 5, 2019
Speaker: Adam Grealish (Betterment)
Title: TBD

November 12, 2019
Quant Finance Forum