Working papers
[7] Geng, S., Lee, T., Mallapragada, D., and Botterud, A. (2023). An Integer Clustering Approach for Modeling Large-Scale EV Fleets with Guaranteed Performance. arXiv.org. https://arxiv.org/abs/2310.02208v1.
[6] Brenner, A., Khorramfar, R., Mallapragada, D., and Amin, S. (2022). Graph Representation Learning for Energy Demand Data: Application to Joint Energy System Planning under Emissions Constraints. Preprint at arXiv, 10.48550/arXiv.2209.12035 10.48550/arXiv.2209.12035.
[5] Barbar, M., and Mallapragada, D.S. (2022). Representative period selection for power system planning using autoencoder-based dimensionality reduction. 10.48550/arxiv.2204.13608.
[4] Khorramfar, R., Santoni-Colvin, M., Amin, S., Norford, L.K., Botterud, A., and Mallapragada, D. (2023). Cost-effective Planning of Decarbonized Power-Gas Infrastructure to Meet the Challenges of Heating Electrification. Preprint at arXiv, 10.48550/arXiv.2308.16814 10.48550/arXiv.2308.16814.\
[3] Ding, Y., Patel, S., Mallapragada, D., and Stoner, R.J. (2024). Repurposing Coal Power Plants into Thermal Energy Storage for Supporting Zero-carbon Data Centers. Preprint at arXiv, https://doi.org/10.48550/arXiv.2402.09675.
[2] Brenner, A., Khorramfar, R., Mallapragada, D., and Amin, S. (2024). Learning-assisted Stochastic Capacity Expansion Planning: A Bayesian Optimization Approach. Preprint at arXiv, https://doi.org/10.48550/arXiv.2401.10451.
[1] Schofield, L., Paren, B., Macdonald, R., Shao-Horn, Y., and Mallapragada, D. (2024). Dynamic Optimization of Proton Exchange Membrane Water Electrolyzers Considering Usage-Based Degradation. Preprint at arXiv, https://doi.org/10.48550/arXiv.2405.06766.
Peer-reviewed Publications
2024
[52] Liu, R., He, G., Wang, X., Mallapragada, D., Zhao, H., Shao-Horn, Y., and Jiang, B. (2024). A cross-scale framework for evaluating flexibility values of battery and fuel cell electric vehicles. Nat Commun 15, 280. https://doi.org/10.1038/s41467-023-43884-x.
[51] Mignone, B.K., Clarke, L., Edmonds, J.A., Gurgel, A., Herzog, H.J., Johnson, J.X., Mallapragada, D.S., McJeon, H., Morris, J., O’Rourke, P.R., et al. (2024). Drivers and implications of alternative routes to fuels decarbonization in net-zero energy systems. Nat Commun 15, 3938. https://doi.org/10.1038/s41467-024-47059-0.
[50] Giovanniello, M.A., Cybulsky, A.N., Schittekatte, T., and Mallapragada, D.S. (2024). The influence of additionality and time-matching requirements on the emissions from grid-connected hydrogen production. Nat Energy 9, 197–207. https://doi.org/10.1038/s41560-023-01435-0.
[49] Chung, D.H., Graham, E.J., Paren, B.A., Schofield, L., Shao-Horn, Y., and Mallapragada, D.S. (2024). Design Space for PEM Electrolysis for Cost-Effective H2 Production Using Grid Electricity. Ind. Eng. Chem. Res. 63, 7258–7270. https://doi.org/10.1021/acs.iecr.4c00123.
[48] Graham, E.J., Sheha, M., Mallapragada, D.S., Herzog, H.J., Gençer, E., Cross, P., Custer, J.P., Goff, A., and Cormier, I. (2024). Optimization of a combined power plant CO2 capture and direct air capture concept for flexible power plant operation. Energy Environ. Sci. https://doi.org/10.1039/D4EE00309H.
2023
[47] Khorramfar, R., Mallapragada, D., and Amin, S. (2024). Electric-gas infrastructure planning for deep decarbonization of energy systems. Applied Energy 354, 122176. 10.1016/j.apenergy.2023.122176.
[46] Schittekatte, T., Mallapragada, D., Joskow, P.L., and Schmalensee, R. (2024). Electricity Retail Rate Design in a Decarbonizing Economy: An Analysis of Time-of-use and Critical Peak Pricing. The Energy Journal 45, 25–56. 10.5547/01956574.45.3.tsch.
[45] Dvorkin, V., Mallapragada, D., and Botterud, A. (2023). Multi-Stage Decision Rules for Power Generation & Storage Investments with Performance Guarantees. IEEE Transactions on Power Systems, 1–14. 10.1109/TPWRS.2023.3257129.
[44] Schittekatte, T., Mallapragada, D., Joskow, P.L., and Schmalensee, R. (2023). Reforming retail electricity rates to facilitate economy-wide decarbonization. Joule 7, 831–836. 10.1016/j.joule.2023.03.012.
[43] Riedmayer, R., Paren, B.A., Schofield, L., Shao-Horn, Y., and Mallapragada, D. (2023). Proton Exchange Membrane Electrolysis Performance Targets for Achieving 2050 Expansion Goals Constrained by Iridium Supply. Energy Fuels 37, 8614–8623. 10.1021/acs.energyfuels.3c01473.
[42] Zang, G., Graham, E.J., and Mallapragada, D. (2023). H2 production through natural gas reforming and carbon capture: A techno-economic and life cycle analysis comparison. International Journal of Hydrogen Energy. 10.1016/j.ijhydene.2023.09.230.
[41] Barbar, M., Mallapragada, D.S., and Stoner, R.J. (2023). Impact of demand growth on decarbonizing India’s electricity sector and the role for energy storage. Energy and Climate Change 4, 100098. 10.1016/j.egycc.2023.100098.
[40] Sheha, M., Graham, E.J., Gençer, E., Mallapragada, D., Herzog, H., Cross, P., Custer, J., Goff, A., and Cormier, I. (2024). Techno-economic analysis of a combined power plant CO2 capture and direct air capture concept for flexible power plant operation. Computers & Chemical Engineering 180, 108472. 10.1016/j.compchemeng.2023.108472.
[39] Mallapragada, D.S., Dvorkin, Y., Modestino, M.A., Esposito, D.V., Smith, W.A., Hodge, B.-M., Harold, M.P., Donnelly, V.M., Nuz, A., Bloomquist, C., et al. (2023). Decarbonization of the chemical industry through electrification: Barriers and opportunities. Joule 7, 23–41. 10.1016/j.joule.2022.12.008.
2022
[38] Narayanan, T.M., He, G., Gençer, E., Shao-Horn, Y., and Mallapragada, D.S. (2022). Role of Liquid Hydrogen Carriers in Deeply Decarbonized Energy Systems. ACS Sustainable Chem. Eng. 10.1021/acssuschemeng.2c00909.
[37] Zhang, Y., Cheng, V., Mallapragada, D.S., Song, J., and He, G. (2022). A Model-Adaptive clustering-Based Time Aggregation Method for Low-Carbon Energy System Optimization. IEEE Transactions on Sustainable Energy, 1–11. 10.1109/TSTE.2022.3199571.
[36] Lazouski, N., Limaye, A., Bose, A., Gala, M.L., Manthiram, K., and Mallapragada, D.S. (2022). Cost and Performance Targets for Fully Electrochemical Ammonia Production under Flexible Operation. ACS Energy Lett., 2627–2633. 10.1021/acsenergylett.2c01197.
[35] Barbar, M., Mallapragada, D.S., and Stoner, R. (2022). Decision making under uncertainty for deploying battery storage as a non-wire alternative in distribution networks. Energy Strategy Reviews 41, 100862. 10.1016/j.esr.2022.100862.
[34] Dvorkin, V., Mallapragada, D., Botterud, A., Kazempour, J., and Pinson, P. (2022). Multi-stage linear decision rules for stochastic control of natural gas networks with linepack. Electric Power Systems Research 212, 108388. 10.1016/j.epsr.2022.108388.
[33] Bose, A., Lazouski, N., Gala, M.L., Manthiram, K., and Mallapragada, D.S. (2022). Spatial Variation in Cost of Electricity-Driven Continuous Ammonia Production in the United States. ACS Sustainable Chem. Eng. 10, 7862–7872. 10.1021/acssuschemeng.1c08032.
[32] Kakodkar, R., He, G., Demirhan, C.D., Arbabzadeh, M., Baratsas, S.G., Avraamidou, S., Mallapragada, D., Miller, I., Allen, R.C., Gençer, E., et al. (2022). A review of analytical and optimization methodologies for transitions in multi-scale energy systems. Renew. Sustain. Energy Rev. 160, 112277.
[31] vom Scheidt F, Qu J, Staudt P, Mallapragada DS, Weinhardt C. Integrating hydrogen in single-price electricity systems: The effects of spatial economic signals. Energy Policy 2022;161:112727. doi:10.1016/J.ENPOL.2021.112727.
[30] Yarlagadda B, Smith SJ, Mignone BK, Mallapragada D, Randles CA, Sampedro J. Climate and air pollution implications of potential energy infrastructure and policy measures in India. Energy Clim Chang 2022;3:100067. doi:10.1016/J.EGYCC.2021.100067.
[29] Junge C, Mallapragada D, Schmalensee R. Energy Storage Investment and Operation in Efficient Electric Power Systems. Energy J 2022;43. doi:10.5547/01956574.43.6.CJUN.
2021
[28] Barbar M, Mallapragada DS, Alsup M, Stoner R. Scenarios of future Indian electricity demand accounting for space cooling and electric vehicle adoption. Sci Data 2021 81 2021;8:1–11. doi:10.1038/s41597-021-00951-6.
[27] Musselman A, Thomas VM, Nazzal D, Papageorgiou DJ, Venkatesh A, Mallapragada DS. The impact of development priorities on power system expansion planning in sub-Saharan Africa. Energy Syst 2021:1–32. doi:10.1007/S12667-021-00433-Z/FIGURES/11.
[26] He G, Mallapragada DS, Bose A, Heuberger-Austin CF, Gençer E. Sector coupling via hydrogen to lower the cost of energy system decarbonization. Energy Environ Sci 2021;14:4635–46. doi:10.1039/D1EE00627D.
[25] Sepulveda NA, Jenkins JD, Edington A, Mallapragada DS, Lester RK. The design space for long-duration energy storage in decarbonized power systems. Nat Energy 2021;6:506–16. doi:10.1038/s41560-021-00796-8.
[24] Isaacs SA, Staples MD, Allroggen F, Mallapragada DS, Falter CP, Barrett SRH. Environmental and economic performance of hybrid power-to- liquid and biomass-to-liquid fuel production in the united states. Environ Sci Technol 2021;55:8247–57. doi:10.1021/ACS.EST.0C07674/SUPPL_FILE/ES0C07674_SI_001.PDF.
[23] He G, Mallapragada DS, Bose A, Heuberger CF, Gencer E. Hydrogen supply chain planning with flexible transmission and storage scheduling. IEEE Trans Sustain Energy 2021;12:1730–40. doi:10.1109/TSTE.2021.3064015.
[22] Mowry AM, Mallapragada DS. Grid impacts of highway electric vehicle charging and role for mitigation via energy storage. Energy Policy 2021;157:112508
2020
[21] Bødal EF, Mallapragada D, Botterud A, Korpås M. Decarbonization synergies from joint planning of electricity and hydrogen production: A Texas case study. Int J Hydrogen Energy 2020. doi:10.1016/j.ijhydene.2020.09.127.
[20] Mallapragada DS, Gençer E, Insinger P, Keith DW, O’Sullivan FM. Can Industrial-Scale Solar Hydrogen Supplied from Commodity Technologies Be Cost Competitive by 2030? Cell Reports Phys Sci 2020:100174. doi:10.1016/j.xcrp.2020.100174.
[19] Mallapragada DS, Sepulveda NA, Jenkins JD. Long-run system value of battery energy storage in future grids with increasing wind and solar generation. Appl Energy 2020;275:115390. doi:10.1016/j.apenergy.2020.115390.
[18] Mallapragada DS, Mignone BK. A theoretical basis for the equivalence between physical and economic climate metrics and implications for the choice of Global Warming Potential time horizon. Clim Change 2020;158. doi:10.1007/s10584-019-02486-7.
2019
[17] Johnson SC, Papageorgiou DJ, Mallapragada DS, Deetjen TA, Rhodes JD, Webber ME. Evaluating rotational inertia as a component of grid reliability with high penetrations of variable renewable energy. Energy 2019;180. doi:10.1016/j.energy.2019.04.216.
[16] Mallapragada DS, Naik I, Ganesan K, Banerjee R, Laurenzi IJ. Life Cycle Greenhouse Gas Impacts of Coal and Imported Gas-Based Power Generation in the Indian Context. Environ Sci Technol 2019;53:539–49. doi:10.1021/acs.est.8b04539.
2018
[15] Mallapragada DS, Reyes-Bastida E, Roberto F, McElroy EM, Veskovic D, Laurenzi IJ. Life cycle greenhouse gas emissions and freshwater consumption of liquefied Marcellus shale gas used for international power generation. J Clean Prod 2018;205:672–80. doi:10.1016/J.JCLEPRO.2018.09.111.
[14] Lara CL, Mallapragada DS, Papageorgiou DJ, Venkatesh A, Grossmann IE. Deterministic electric power infrastructure planning: Mixed-integer programming model and nested decomposition algorithm. Eur J Oper Res 2018. doi:10.1016/j.ejor.2018.05.039.
[13] Mallapragada DS, Papageorgiou DJ, Venkatesh A, Lara CL, Grossmann IE. Impact of model resolution on scenario outcomes for electricity sector system expansion. Energy 2018;163:1231–44. doi:10.1016/j.energy.2018.08.015.
2017
[12] Mallapragada D, Mignone BK. A consistent conceptual framework for applying climate metrics in technology life cycle assessment. Environ Res Lett 2017;12. doi:10.1088/1748-9326/aa7397.
2015
[11] Al-Musleh EI, Mallapragada DS, Agrawal R. Efficient electrochemical refrigeration power plant using natural gas with ∼100% CO2 capture. J Power Sources 2015;274. doi:10.1016/j.jpowsour.2014.09.184.
[10] Gençer E, Mallapragada DS, Maréchal F, Tawarmalani M, Agrawal R. Round-the-clock power supply and a sustainable economy via synergistic integration of solar thermal power and hydrogen processes. Proc Natl Acad Sci 2015;112:15821–6. doi:10.1073/pnas.1513488112.
2014
[9] Mallapragada DS, Duan G, Agrawal R. From shale gas to renewable energy based transportation solutions. Energy Policy 2014;67. doi:10.1016/j.enpol.2013.12.056.
[8] Mallapragada DS, Tawarmalani M, Agrawal R. Synthesis of augmented biofuel processes using solar energy. AIChE J 2014;60. doi:10.1002/aic.14456.
[7] Al-musleh EI, Mallapragada DS, Agrawal R. Continuous power supply from a baseload renewable power plant. Appl Energy 2014;122. doi:10.1016/j.apenergy.2014.02.015.
[6] Gençer E, Al-Musleh E, Mallapragada DS, Agrawal R. Uninterrupted renewable power through chemical storage cycles. Curr Opin Chem Eng 2014;5. doi:10.1016/j.coche.2014.04.001.
[5] Mallapragada DS, Agrawal R. Limiting and achievable efficiencies for solar thermal hydrogen production. Int J Hydrogen Energy 2014;39:62–75. doi:10.1016/j.ijhydene.2013.10.075.
[4] Al-musleh EI, Mallapragada DS, Agrawal R. Continuous baseload renewable power using chemical refrigeration cycles. Comput Chem Eng 2014;71. doi:10.1016/j.compchemeng.2014.10.002.
2013
[3] Mallapragada DS, Singh NR, Curteanu V, Agrawal R. Sun-to-fuel assessment of routes for fixing CO2 as liquid fuel. Ind Eng Chem Res 2013;52. doi:10.1021/ie301125c.
2012
[2] Singh NR, Mallapragada DS, Agrawal R, Tyner WE. Economic analysis of novel synergistic biofuel (H2Bioil) processes. Biomass Convers Biorefinery 2012;2. doi:10.1007/s13399-012-0043-5.
2010
[1] Agrawal R, Mallapragada DS. Chemical engineering in a solar energy-driven sustainable future. AIChE J 2010;56. doi:10.1002/aic.12435.