AUTOMATIC MUSIC ACCOMPANIMENT BASED ON AUDIO-VISUAL SCORE FOLLOWING

Akira Maezawa, Kazuhiko Yamamoto
Yamaha Corporation

ABSTRACT

We present an automatic accompaniment system for synchronizing a player piano to human performers, by recognizing both visual and auditory cues. To this end, we extend score following technique to incorporate audio and visual cue detectors. The system generates player piano output and visual cues based on the predicted playback position. The playback position is obtained by coupling the predicted position of human player and a generative model of the accompaniment’s tempo track. We present a video demonstration of the system used in a real-life concert.

1. INTRODUCTION

Automatic accompaniment is a method to generate accompaniment to a known piece of music, in such a way that it is synchronized to human musicians. This is achieved by modeling how human musicians coordinate their timings in a music ensemble. Typically, a musician would use auditory and visual cues to track other members in the ensemble. Then, he/she would play the assigned part such that it is synchronized to the ensemble, so that the played part sounds natural. When necessary, the musician would provide physical gestures.

We present a system that mimics these capabilities. To recognize the auditory and visual cues, we extend score following to incorporate not only audio but also visual cue detection. To generate auditory and visual response, we generate accompaniment using player piano and cue gestures that are displayed on screen visible from the players.

2. METHOD

Our system comprises of multimodal score following module, ensemble timing coordination module, and output generation module.

2.1 Score following

The score following is based on segmental HMM (sHMM) that jointly tracks the tempo and the score position. Specifically, we treat the music score as a sequence of R segments. The sHMM expresses the segment r, the expected duration n (in frames) that is used to play the segment, and the current frame l within each segment. The transition of state variables (r, n, l) is then expressed as follows:

1. Self-transition: p
2. Transition from $(r, n, l < n)$ to $(r, n, l + 1)$: $1 − p$
3. Transition from $(r, n, l = n)$ to $(r + 1, n', 0)$: $(1 − p) \frac{1}{2\pi \sigma_{n'}} e^{-\frac{(T_n − n')^2}{2\sigma_{n'}^2}}$

This kind of model is capable of expressing the smoothness of tempo curve, while allowing the duration of each segment to deviate from the expected duration n. In this respect, it can be thought of as using the best of the worlds of an explicit-duration HMM [1] and a left-to-right HMM approach [5]. Each state (r, n, l) has a corresponding position of the score, denoted $s(r, n, l)$.

Based on these parameters, let us express the likelihood of the auditory cues. For each position s of the score, we define the expected normalized constant-Q transform (CQT), $\bar{e}_s \in \mathbb{R}^F$, and its normalized half-wave rectified first-order difference, $\Delta \bar{e}_s \in \mathbb{R}^F$. We also define the respective inverse variances κ_s^c and $\kappa_s^{(\Delta c)}$. Then, the likelihood of observing the normalized CQT $c \in \mathbb{R}^F$ and the normalized $\Delta c \in \mathbb{R}^F$ is computed as follows:

$$p(c, \Delta c|s) = \bar{s}(r, n, l), \lambda_s \{\bar{e}_{s_j}\}_{j=1}^S, \{\Delta \bar{e}_{s_j}\}_{j=1}^S$$

$$\nuMF(c|\bar{e}_s, \kappa_s^c)\nuMF(\Delta c|\Delta \bar{e}_s, \kappa_s^{(\Delta c)})$$

(1)

Here, $\nuMF(\cdot)$ is the von Mises-Fisher distribution.

c is generated by analyzing the score data and expressing the expected CQT as a weighted sum of spectral bases; Δc is generated by taking the normalized half-wave rectified first order difference of c. Using audio data alone, the model achieves piecewise precision of 96% for chamber music in RWC classical music database [3].

Next, let us discuss the computation of visual cues. Since visual information is important when auditory cues are unavailable [2], detected visual cues are integrated into the observation likelihood. To detect visual cues, we place cameras in front of human musicians and look for a large vertical movement by analyzing the optical flow. An upward motion that is above a given threshold is detected as the start of a cue. To incorporate the cue, the score is marked with annotations $\{\hat{q}_i\}$ that indicate where visual cues are expected. When a cue is detected, we set the likelihood of score positions $\cup[\hat{q}_i − \tau, \hat{q}_i]$ to zero, which

c\text{generated by analyzing the score data and expressing the expected CQT as a weighted sum of spectral bases; } \Delta c \text{ is generated by taking the normalized half-wave rectified first order difference of } c. \text{ Using audio data alone, the model achieves piecewise precision of 96% for chamber music in RWC classical music database [3].}

Next, let us discuss the computation of visual cues. Since visual information is important when auditory cues are unavailable [2], detected visual cues are integrated into the observation likelihood. To detect visual cues, we place cameras in front of human musicians and look for a large vertical movement by analyzing the optical flow. An upward motion that is above a given threshold is detected as the start of a cue. To incorporate the cue, the score is marked with annotations $\{\hat{q}_i\}$ that indicate where visual cues are expected. When a cue is detected, we set the likelihood of score positions $\cup[\hat{q}_i − \tau, \hat{q}_i]$ to zero, which

\[p(c, \Delta c|s) = \bar{s}(r, n, l), \lambda_s \{\bar{e}_{s_j}\}_{j=1}^S, \{\Delta \bar{e}_{s_j}\}_{j=1}^S \]

\[= \nuMF(c|\bar{e}_s, \kappa_s^c)\nuMF(\Delta c|\Delta \bar{e}_s, \kappa_s^{(\Delta c)}) \]
2.2 Ensemble timing coordination

In order for the accompaniment to respond reasonably, it is important to both consider the generative model of human players and the machine, similar in spirit to [6].

We treat the trajectory of the score position played by humans and the machines as a linear dynamical system, assuming that the score position \(x \) changes with a slowly drifting velocity \(v \). We assume such dynamical system exists independently for (1) the parts played by the human performers and (2) the machine. Then, the systems are coupled together to produce the final timing. When the \(n \)th onset of either the machine or the human players is detected, the system updates its interval variables.

The trajectory of the score position for human performers is modeled as follows:

\[
\begin{pmatrix}
 v_n^{(h)} \\
v_n^{(a)}
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 \\
\Delta T & 1
\end{pmatrix}
\begin{pmatrix}
v_{n-1}^{(h)} \\
v_{n-1}^{(a)}
\end{pmatrix} + \begin{pmatrix}
\epsilon_n^{(h)} \\
\epsilon_n^{(a)}
\end{pmatrix},
\]

where \(\Delta T \) is the time elapsed between \(n \)th onset and \((n-1)\)th onset. The noise is drawn from a correlated Gaussian noise, since the change in tempo correlates with change in expected score position. Then, the system assumes that at the corresponding onset time, observation \(\mu_t \) (obtained from score following) is generated from distribution \(N(x_n^{(h)}, \sigma_t^2) \).

The trajectory of the score position for the machine part is given as follows:

\[
\begin{pmatrix}
v_n^{(a)} \\
x_n^{(a)}
\end{pmatrix} =
\begin{pmatrix}
1 - \beta & 0 \\
\Delta T & 1
\end{pmatrix}
\begin{pmatrix}
v_{n-1}^{(a)} \\
x_{n-1}^{(a)}
\end{pmatrix} + \begin{pmatrix}
\beta v_n^{(a)} \\
0
\end{pmatrix} + \begin{pmatrix}
\epsilon_n^{(a)} \\
\epsilon_n^{(a)}
\end{pmatrix}.
\]

The parameter \(\beta \) controls how strongly the accompaniment part "wants" to play with tempo \(v_n^{(a)} \). We have previously shown that, in the context of multiple audio alignment, this kind of mean-reverting dynamics is effective at modeling the variability of tempo [4].

Finally, the timing is synchronized by coupling \([v_n^{(h)} x_n^{(h)}] \) and \([v_n^{(a)} x_n^{(a)}] \), yielding in the final output \([v_n, x_n] \):

\[
\begin{pmatrix}
v_n \\
x_n
\end{pmatrix} = \gamma \begin{pmatrix}
v_n^{(a)} \\
x_n^{(a)}
\end{pmatrix} + (1 - \gamma) \begin{pmatrix}
v_n^{(h)} \\
x_n^{(h)}
\end{pmatrix}.
\]

\(\gamma \) is adjusted according to the extent of leadership assumed by the human (as opposed to the machine) at a given point in the music.

2.3 Output generation

Based on the inferred dynamical system state variable \(v_n \) and \(x_n \), the system predicts the current position to play, taking into account the I/O latency. Based on the predicted position, the system sends necessary messages to the player piano. Furthermore, the accompaniment part contains markers that indicate when the system should provide a visual cue to the performers. When the sequencer encounters this marker, a visualization system generates a nodding-like animation, which the human performers see to coordinate their playing. This kind of cue is relevant when the machine part assumes leadership and wants to express its timing fluctuations (e.g., an agogic accent).

3. DEMONSTRATION

We present a video demonstration of our method used in a real-life concert setting, which took place on 5/19/2016 in the Sogakudo Hall at the Tokyo University of the Arts. In the demonstration, the Scharoun Ensemble of the Berliner Philharmoniker and Yamaha’s Disklavier player piano plays Schubert’s “Trout” quintet together.

Acknowledgment The concert was supported by the Center of Innovation program from the Japan Science and Technology Agency and the Tokyo University of the Arts.

4. REFERENCES