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ABSTRACT

Singing melody extraction is a task that tracks pitch con-
tour of singing voice in polyphonic music. While the ma-
jority of melody extraction algorithms are based on com-
puting a saliency function of pitch candidates or sepa-
rating the melody source from the mixture, data-driven
approaches based on classification have been rarely ex-
plored. In this paper, we present a classification-based
approach for melody extraction on vocal segments us-
ing multi-column deep neural networks. In the proposed
model, each of neural networks is trained to predict a pitch
label of singing voice from spectrogram, but their outputs
have different pitch resolutions. The final melody contour
is inferred by combining the outputs of the networks and
post-processing it with a hidden Markov model. In order to
take advantage of the data-driven approach, we also aug-
ment training data by pitch-shifting the audio content and
modifying the pitch label accordingly. We use the RWC
dataset and vocal tracks of the MedleyDB dataset for train-
ing the model and evaluate it on the ADC 2004, MIREX
2005 and MIR-1k datasets. Through several settings of
experiments, we show incremental improvements of the
melody prediction. Lastly, we compare our best result to
those of previous state-of-the-arts.

1. INTRODUCTION

Melody is a pitch sequence with which one might hum
or whistle a piece of polyphonic music in an identifiable
manner [10]. Among others, singing voice has been used
as a main source of the melody, particularly in popular
music. Thus, extracting melodies from singing voice can
be used for not only music retrieval, for example, query-
by-humming [5] or cover song identification [16] but also
voice separation as a guide to inform the voice source.

A number of melody extraction algorithms, which can
be applied for singing voice with an additional voice de-
tection step, have been proposed so far and they are well
summarized in [13]. The majority of the algorithms are
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based on computing a saliency function of pitch candidates
or separating the melody source from the mixture. They
typically return melody as a continuous pitch stream. On
the other hand, data-driven approaches based on classifi-
cation, which categorizes melody into a finite set of pitch
labels, have rarely been explored. An early work by Ellis
and Poliner used a support vector machine classifier to pre-
dict a pitch label from spectrogram [7]. Recently, Bittner
et. al. proposed a method using a random forest classifier
that predicts a pitch contour from highly hand-crafted fea-
tures [3]. To the best of our knowledge, no other attempts
have been made so far.

This scarcity of classification-based approach might be
attributed to the following limitations. First, the extracted
melody is supposed to be quantized by the pitch catego-
rization (e.g. semitone unit in [7]). While this discrete
outcome may be useful for some applications that require
a MIDI-level pitch notation, it loses detailed information
about singing styles, for example, vibrato or note-to-note
transition patterns. Second, the data-driven approach typ-
ically requires sufficient labeled training data to achieve
good performance. Finer pitch resolutions may need even
more training data and possibly more complicated classi-
fiers that can handle it.

In this paper, we address these limitations of the
classification-based approach using multi-column deep
neural networks (MCDNN). In the proposed model, each
of DNN is trained to predict a pitch label of singing voice
with different pitch resolutions. The outputs of the net-
works are combined and post-processed with a hidden
Markov model to produce the final melody contour. Given
a single DNN and training data, we observed that perfor-
mance is inversely proportional to pitch resolutions. By
combining the multiple DNNs, we show that the model can
achieve higher pitch resolutions and better performance at
the same time. In addition, we augment the training data
by pitch-shifting the audio content and modifying the pitch
label accordingly. We show that this is an effective tech-
nique to improve classification performance of the model.

2. RELATED WORK

The MCDNN was originally devised as an ensemble
method to improve the performance of DNN for image
classification [4]. In this model, each column (or single
DNN) share the same network configuration and training
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data. However, they are randomly initialized, and the in-
put data may be preprocessed in different ways for each
column. The predictions from all columns are averaged to
produce the final output. The multi-column approach was
applied to image denoising as well [1]. In this approach,
each column is trained on a different type of noise, and the
outputs are adaptively weighted to handle a variety of noise
types. Our proposed model may pose half-way between
these two approaches. Each column is trained to conduct a
different role, having a different number of outputs. How-
ever, we combine the outputs with even weights as they are
the same pitch quantity with different resolutions.

As aforementioned, classification-based melody extrac-
tion is rarely attempted. Among them, our proposed model
is similar to the SVM approach by Ellis and Poliner [7] in
that both of them predict a pitch label from spectrogram
using a classifier and a hidden Markov model for post-
processing. However, our model produces a finer pitch
resolution. Also, we take advantage of deep neural net-
works, which recently has proved to be capable of having
great performance with sufficient labeled data and comput-
ing power.

3. PROPOSED METHODS
3.1 Multi-Column Deep Neural Networks

Our architecture of the MCDNN is illustrated in Figure 1.
Each of the DNN columns takes an odd-numbered spec-
trogram frames as input to capture contextual information
from neighboring frames and predicts a pitch label at the
center position of the context window. The DNNs are con-
figured with three hidden layers and ReLLUs for the non-
linear function in common, but the output layers predict a
pitch label with different resolutions. The lowest resolu-
tion is semitone, corresponding to the leftmost one. The
next ones progressively have higher resolutions by two
times (e.g. 0.5 semitones, 0.25 semitones, ...), thereby
having as much pitch labels as the increased resolutions.
Given the outputs of the columns, we compute the com-
bined posterior as follows:

N

YrCDNN = H(Z/%NN +€) ey
i=1

where y%, y v corresponds to the prediction from i*" col-
umn DNN, and N corresponds to the number of total
columns. We use multiplication in a maximum-likelihood
sense, assuming that the column DNNs are independent.
We add a small value, € to prevent numerical underflow.
Note that, before combining the predictions, those with
lower resolutions are actually expanded by locally repli-
cating each element so that the output sizes are the same
for all columns. For example, the leftmost DNN in Fig-
ure 1, which predicts pitch in semitone, expands the output
vector by a factor of 4. As a result, the merged posterior
maintains the highest pitch resolution.
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Figure 1: Block diagram of our proposed multi-column
deep neural networks for singing melody extraction

3.2 Data Augmentation

Recent advances in deep learning are attributed to the
availability of large-scale labeled data among others. Con-
sidering that melody-labeled public datasets are not much
available, and manual labeling is laborious, it is desirable
to augment existing datasets. In our experiments, we aug-
ment our training set by changing the global pitch of the
audio content. Instead of pitch-shifting by resampling [10],
which carries out time-stretching at the same time, we use
a phase-vocoder method approach to achieve more natu-
ral transposition [9]. Pitch shifting proved to be an effec-
tive method of data augmentation for singing voice detec-
tion [15]. We will show that it works for singing melody
extraction as well. On top of this, we also augment the
training data by simply using an extra dataset that covers
more music genres, as melody characteristics are quite dis-
criminative over different music genres [14].

3.3 Temporal Smoothing by HMM

Although the MCDNN is trained to capture contextual in-
formation by taking multiple frames as input data, this may
be limited to learn long-term temporal dependencies that
appear on the pitch contours of singing voices. Also, the
prediction is performed independently every time step. In
order to incorporate the sequential structure further, we
conduct temporal smoothing for the combined output of
the MCDNN using HMM. We implemented the HMM, fol-
lowing the procedure in [7].

3.4 Singing Voice Detection

The MCDNN is trained with only voiced frames for pitch
classification. Therefore, a separate singing voice detec-
tion step is necessary for the test phase. However, since
singing voice detection itself is a challenging task and not
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our main concern in this paper, we evaluate the test data
using two scenarios. In the first scenario, we assume that a
perfect singing voice detector is available so that we focus
on the performance of our model only on voiced frames. In
the second scenario, we use a simple energy-based singing
voice detector introduced in [7]. The detector sums spec-
tral energy between 200 Hz and 1800 Hz where the singing
voice is likely to have a higher level than background mu-
sic. The sum is normalized by the median energy in the
band, and a threshold is used to determine the presence
of singing voice. We expect that the performance of our
model will range between the results from the two scenar-
ios if a better singing voice detector is available.

4. DATASETS
4.1 Training Datasets

We use the RWC pop music database as our main train-
ing set [8]. It contains 100 popular songs with singing
voice melody annotations. We divide the database into two
splits, 85 songs for training and the remaining 15 songs for
validation. In order to avoid bias by gender and the num-
ber of singers, we select the songs such that male/female
singers and solo/chorus singing are evenly distributed over
the training and validation sets. We also prevent the same
singer’s songs from being split over the two sets so that
singer voices in the validation stage are never heard. In or-
der to train the MCDNN more effectively, we augment the
training set by applying pitch-shifting by 1, 2 semitones.
This increases the amount of the training set by five times.
Also, we modify the corresponding pitch label accordingly.

Since the RWC database includes only pop music, the
model trained on the set may not work well for other gen-
res. We thus increase the size of training set and genre di-
versity by using 60 vocal tracks of the MedleyDB dataset
as an additional training set [3].

4.2 Test Datasets

We examine our proposed model with three publicly
available datasets: ADC2004, MIREX05, and MIRI1k.
Due to the limited accessibility to the datasets' and the
limitation of our model that can handle singing voice
only, we test them with several options. Specifically,
the ADC2004 dataset includes some instrumental pieces
where the melody is played by saxophones or other mu-
sical instruments. The MIREXO0S5 dataset we obtained has
only 13 out of the total 25 songs. Furthermore, only 9
of the 13 songs contain singing voice. For these reasons,
we evaluate our model on all songs and those with singing
voices separately for the two sets.

We report various evaluation metrics for melody ex-
traction, including overall accuracy, raw pitch accuracy,
raw chroma accuracy, voicing detection rate and voicing
false alarm rate. We compute them using mir_eval [11],

'We downloaded the ADC2004 and MIREXO05 datasets from
http://labrosa.ee.columbia.edu/projects/melody/ and the MIR1k dataset
from https://sites.google.com/site/unvoicedsoundseparation/mir-1k

a Python library designed for objective evaluation in MIR
tasks.

4.3 Preprocessing

We resample the audio files to 8 kHz and merge stereo
channels into mono. We then compute spectrogram with
Hann window of 1024 samples and hop size of 80 sam-
ples, and finally compress the magnitude by a log scale.
Following the strategy in [7], we use only 256 bins from
0 Hz to 2000 Hz where the human singing voices have a
relatively greater level than in other frequency bands with
regard to background music.

5. EXPERIMENTS

Given the MCDNN model and training data, we conduct
several experiments to figure out the effect of different set-
tings in the model. In the followings, we describe options
in training the MCDNN and the experiments.

5.1 DNN Training

We configure the DNN to have three hidden layers, each
with 512, 512 and 256 units, and ReLUs for the nonlin-
ear function. For the output layer, we use the sigmoid
function instead of the softmax function, which is a typ-
ical choice in the categorical classification, because the
sigmoid slightly worked better in our experiments. Thus,
we use binary cross-entropy between the output layer and
the one-hot representation of pitch labels as an objective
function to minimize. The pitch labels cover from D2 to
F#5 in semitone unit. The label vectors are expanded as
pitch resolution increases. We initialize the weights with
random values from the uniform distribution and optimize
the objective function using RMSprop and 20% dropout
for all hidden layers to avoid overfitting to the training set.
For fast computing, we run the code using Keras 2, a deep
learning library in Python, on a computer with two GPUs.

5.2 Context Size

Our model takes multiple frames of spectrogram as input
to take contextual information into account. Our first ex-
periment is to figure out an optimal size of the input for
different pitch resolutions. For this experiment, we train a
single-column DNN using one million examples from the
RWC training set. Every training iteration, we randomly
select a subset from the pool. We then verify classification
accuracy using only voiced frames on the RWC validation
set. Figure 2 shows the classification accuracy for a vary-
ing size of the spectrogram input. We experimented with
multi-frame as inputs of DNN where the input data were
taken from IV neighbor spectrogram frames. The accuracy
progressively increases up to 7 or 9 frames and then con-
verge to a certain level. This is expected because pitch con-
tours of singing voices usually have continuous curve pat-
terns and this temporal features can be captured better by

2 https://github.com/fchollet/keras
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Figure 2: Classification accuracy on the validation

set. “res=1" indicates pitch resolution in semitone unit.
“res=2", “res=4", and ‘“res=8” indicate progressively
higher resolutions than semitone by a factor of 2.

taking multiple frames. The result also shows that the val-
idation accuracy is inversely proportional to the pitch res-
olution. That is, as the resolution increases, the accuracy
drops quite significantly. This is also expected because the
number of input data per label will decrease given the same
training condition and also the accuracy criterion becomes
more strict (i.e., slight missing between neighboring pitch
labels could have been regarded as a correct prediction).
For the following experiments, we fix the input size to 11
frames.

5.3 Data Augmentation

As described in Section 4.1, we augment the training set
in two folds. One is by expanding the existing train-
ing set using pitch shifting and the other is by making
up with another dataset, i.e., 60 songs including singing
voices among the MedleyDB dataset. For this experiment,
we train a single-column DNN using the increased train-
ing pool, specifically, six million examples from the aug-
mented RWC training set and additional 200,000 examples
or so from the MedleyDB songs. Again, we verify classi-
fication accuracy using only voiced frames on the RWC
validation set.

Figure 3 shows the classification accuracy for a varying
size of pitch resolution when the pitch-shifted RWC data
and MedleyDB data are added to the training data pool in
turn. Overall, the accuracy increases by 2 to 3 % with
the additional sets. An interesting result is that, with the
pitch-shifted data, the accuracy increases more when pitch
resolution is low (1 or 2) and, with the additional Med-
leyDB songs, the accuracy increases more when pitch res-
olution is high (4 or 8). This is probably because the RWC
data is pitch-shifted in semitone units and so technically in-
creases data with low pitch resolutions whereas strong vi-
brato voices in the opera songs included in the MedleyDB
dataset increase data with high pitch resolutions relatively
more.

5.4 Single-column vs. Multi-column

As shown in the previous experiments, the classification
accuracy is inversely proportional to the pitch resolution
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Figure 3: Classification accuracy on the validation set
when the pitch-shifted versions of the RWC dataset and
60 vocal songs of the MedleyDB dataset are added in turn
to the training set.

in the single-column DNN (SCDNN). That is, as the reso-
lution becomes finer, the classification accuracy decreases,
and vice versa. The MCDNN was devised from this empir-
ical result, hoping to achieve both high accuracy and high
pitch resolution simultaneously by using the SCDNN with
different pitch resolutions together. In this experiment, we
validate the idea by comparing the SCDNN and two dif-
ferent combinations of MCDNN. In particular, we evalu-
ate them on the three test sets (ADC2004, MIREXO05 and
MIR1k), assuming the voiced frames are perfectly detected
(the first singing voice detection scenario in Section 3.4).

Figure 4 displays the raw pitch accuracy (RPA) and raw
chroma accuracy (RCA). Note that we evaluate the models
on the ADC2004 and MIREXO5 datasets separately for all
songs including instrumental pieces and a subset excluding
them (for the latter, the dataset name is suffixed with “vo-
cal”). Overall, the MCDNN improves the melody extrac-
tion accuracies. An interesting result is that the MCDNN
increases the accuracies on the sets with singing voices
quite significantly (about 5 % in RPA and RCA on the
MIREXO05-vocal) whereas it can be even worse than the
SCDNN when instrumental pieces are included. This is
actually expected because our model is trained only using
voiced frames. This indicates that our model is a special-
ized melody extraction algorithm that works only on mu-
sic including singing voices. Comparing the two MCDNN
models, there is no significant difference in performance.
Thus, the simpler model (the 1-2-4 MCDNN) seems to be
a better choice.

5.5 HMM-based Postprocessing

We conduct the Viterbi decoding based on a HMM model
for temporal smoothing of the combined prediction. We
estimate the prior probabilities and transition matrix from
ground-truth of the training set. We then use the prediction
of whole tracks as posterior probabilities. Table 1 shows
the results as performance increments after applying the
Viterbi decoding for the 1-2-4 MCDNN on the test sets.

5.6 A Case Example of Singing Melody Extraction

Our proposed model is capable of predicting temporally
smooth pitch contours by using multi-resolution pitch la-
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Figure 4: Raw pitch accuracy (RPA) and raw chroma accuracy (RCA) on the ADC2004, MIREX2005 and MIR1K dataset
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vocals. Here we assume that we have a perfect voice detector to focus on accuracy on voiced frames.

without HMM | with HMM
Dataset RPA | RCA | RPA | RCA
ADC2004 0.749 | 0.806 | 0.762 | 0.816
ADC2004-vocal | 0.827 | 0.852 | 0.835 | 0.856
MIREXO05 0.801 | 0.817 | 0.803 | 0.817
MIREXO05-vocal | 0.869 | 0.875 | 0.871 | 0.877
MIR 1k 0.766 | 0.813 | 0.769 | 0.813

Table 1: Performance increment by HMM-based smooth-
ing on the 1-2-4 MCDNN.

bels, and the capability is supported more by the aug-
mented datasets. Here we verify it by illustrating an ex-
ample of singing melody extraction. We selected an opera
song from the ADC2004 dataset because the singing voices
have dynamic pitch motions such as strong vibrato. Fig-
ure 5 shows the results from three different melody ex-
traction models. The left one is from the SCDNN with
a pitch resolution of 4 (i.e. 1/4 semitone) and trained only
with the RWC dataset. The middle one is from the same
SCDNN but trained with additional pitch-shifted RWC
dataset and MedleyDB dataset. The right one is from the
1-2-4 MCDNN that has the three pitch resolutions. Com-
paring the first two models, the additional songs help track-
ing the vibrato but the second model still misses the whole
excursion. With the additional resolutions, the MCDNN
makes further improvement, tracking the pitch contours
quite precisely.

5.7 Comparison to State-of-the-art Methods

We compare our proposed method with state-of-the-art al-
gorithms on the three test datasets in Table 2. The com-
pared algorithms are all based on pitch saliency [2, 6, 12].
The evaluation metrics include overall accuracy (OA), raw
pitch accuracy (RPA), raw chroma accuracy (RCA), voice
recall (VR) and voice false alarm (VFA). As mentioned

Algorithm OA |RPA |[RCA |VR |VFA
Arora [2] 0.6900.814|0.859{0.765|0.235
Dressler [6] 0.85310.88310.88910.901 |0.158
Salamon [12] 0.735/0.763 | 0.787|0.805 | 0.151
MCDNN(all) |0.655|0.703|0.759 | 0.874 | 0.469
MCDNN(vocal) | 0.7310.758 | 0.783 | 0.889 | 0.412

(a) ADC2004
Algorithm OA |RPA |RCA |VR |VFA
Arora [2] 0.63410.692(0.765|0.810 | 0.344

Dressler [6] 0.71510.770]0.806 | 0.831 | 0.300
Salamon [12] 0.657|0.676|0.762 | 0.773 | 0.263
MCDNN(all) 0.616|0.733|0.7520.894 | 0.585
MCDNN(vocal) [0.684 |0.776 | 0.786 | 0.870 | 0.490

(b) MIREXO05

Algorithm OA [RPA [RCA |VR |VFA
MCDNN(vocal) | 0.613|0.726 |0.770 [ 0.934 | 0.658
(c) MIR-1K

Table 2: Melody extraction results on three test datasets.
In this evaluation, we used a simple energy-based voice
detector for fair comparison.

in Section 4.2, we have only 13 songs in the MIREXO05
dataset. Since we use a simple energy-based voice detec-
tor (the second singing voice detection scenario in Section
3.4), the results of our model were not very impressive.
However, even with it, the accuracies are quite comparable
to some of the algorithms when the test sets include singing
vocals. Also, from Figure 4, we can see the RPA and RCA
when we have a perfect voice detector. This shows that the
accuracies significantly increase, being comparable to the
top-notch one.
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Figure 5: A case example of melody extraction on an opera song using different models and training data

6. CONCLUSIONS

In this paper, we proposed a novel classification-based
melody extraction algorithm on vocal segments using the
multi-column deep neural networks. We showed how the
data-driven approach can be improved by different settings
of the model such as input size, data augmentation, use
of multi-column DNN with different pitch resolutions and
HMM-based smoothing. The limitation of this model is
that it works well only for singing voice because we trained
it only with songs where vocals lead the melody. However,
this also indicates that our model can be improved to a gen-
eral melody extractor if a sufficient amount of instrumental
pieces are included in the training sets. We compared our
model to previous state-of-the-arts. Since we used a sim-
ple energy-based singing voice detector, the performance
of our model has limitations. However, the results show
that, with a better voice detector, our model can be im-
proved further.
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