Perfusion Imaging of the Liver: Current Challenges and Future Goals

Improved therapeutic options for hepatocellular carcinoma and metastatic disease place greater demands on diagnostic and surveillance tests for liver disease. Existing diagnostic imaging techniques provide limited evaluation of tissue characteristics beyond morphology; perfusion imaging of the liver has potential to improve this shortcoming. The ability to resolve hepatic arterial and portal venous components of blood flow on a global and regional basis constitutes the primary goal of liver perfusion imaging. Earlier detection of primary and metastatic hepatic malignancies and cirrhosis may be possible on the basis of relative increases in hepatic arterial blood flow associated with these diseases. To date, liver flow scintigraphy and flow quantification at Doppler ultrasonography have focused on characterization of global abnormalities. Computed tomography (CT) and magnetic resonance (MR) imaging can provide regional and global parameters, a critical goal for tumor surveillance. Several challenges remain: reduced radiation doses associated with CT perfusion imaging, improved spatial and temporal resolution at MR imaging, accurate quantification of tissue contrast material at MR imaging, and validation of parameters obtained from fitting enhancement curves to biokinetic models, applicable to all perfusion methods. Continued progress in this new field of liver imaging may have profound implications for large patient groups at risk for liver disease.

BACKGROUND: NEED FOR IMPROVED LIVER IMAGING

To date, existing imaging methods for the diagnosis of cirrhosis and HCC are falling short of clinical needs. For the detection of cirrhosis, imaging techniques rely primarily on morphologic criteria—particularly identification of a nodular liver surface and liver atrophy with secondary signs of portal hypertension. Ultrasonography (US) has been reported to have a sensitivity of 74% (79 of 107 patients) (5) to 88% (50 of 57 patients) (6) for the detection of cirrhosis (5–7) when liver biopsy and/or gross observation at laparoscopy were used as standards of reference. Multiphasic contrast material–enhanced CT protocols have...
From a public health perspective, the potential benefit of higher sensitivity and higher specificity liver imaging has increased substantially in recent years. HCC, the most common primary liver cancer and fifth most common cancer in the world, is responsible for more than one-half million deaths annually worldwide (15). While the reported 3-year survival rate for untreated small HCC (≤5 cm) is 21% (16), the 4-year survival rate in patients with cirrhosis who undergo transplantation for small HCC (one lesion of ≤5 cm or as many as three lesions of ≤3 cm) is approximately 75% (17). This discrepancy suggests that early detection of small HCC may be critical to patient outcome. Greater organ availability made possible by the increasing practice of adult-to-adult living related liver donor transplantation (18), combined with improved detection of small HCC, has the potential to dramatically influence the care of patients at risk. The early noninvasive detection of cirrhosis may enable earlier identification of patients at risk for HCC and more timely treatment of the diseases that cause cirrhosis; moreover, noninvasive detection may obviate histologic sampling.

For the evaluation of metastatic disease, sensitivity values of 74% (60 of 81 metastases) (19) to 85% (247 of 290 metastases) (20) have been reported when contrast-enhanced CT is used (19–21); in the study by Ward et al (19), 17 metastases missed by all readers were smaller than 1 cm. Histologic evaluation of surgical specimens, as well as intraoperative US and gross examination of the unresected liver, were used as standards of reference (19–21). Improved detection and characterization of metastatic disease to the liver also has profound implications for the prognosis and treatment of patients at risk. The earlier identification of patients with micrometastatic disease may facilitate future use of targeted chemotherapeutic strategies. Antiangiogenic therapies targeted against vascular endothelial growth factors already have demonstrated promising results for the treatment of multiple cancers in phase II clinical trials (22,23). Moreover, exclusion of the presence of micrometastatic disease could obviate adjuvant chemotherapeutic strategies in some patient groups. Improved detection of focal metastatic disease also may affect the outcome in candidates for segmental hepatectomy (24–28).
in patients with cirrhosis following ade- nosine-induced hepatic arterial vasodila- tation, this arterial reserve has been found to benefit hepatic function and to improve liver oxygenation (33). The hep- atic arterial buffer response in cirrhosis has been demonstrated in a rat model (2); supportive data also have been reported in humans with cirrhosis (31,32,34–39). To date, however, a quantitative thresh- old of change in absolute or fractional arterial flow that delineates the onset of this response and the correlation be- tween flow changes and other markers of cirrhosis have not been determined.

Development of Primary Liver Malignancy: HCC

Folkman and colleagues (40) first pro- posed the dependence of sustained tumor growth on angiogenesis in the 1960s, a relationship that continues to be heavily explored today (41,42). In patients with cirrhosis, a spectrum of nodules, including benign regenerative nodules, dysplastic nodules, and HCC, can form; differences in their respective blood supplies can assist in their detection and characterization (43–46). Regenerative nodules, like normal liver parenchyma, continue to receive a majority of their blood supply from the portal vein, whereas the evolution from a low-grade dysplastic nodule to frank HCC is associated with a progression toward in- creasing arterial blood supply (43–46) (Fig 3). During this evolution, sinusoidal endothelial cells are recruited to create an arte- riorial network that gradually replaces normal sinusoidal architecture, and this process is known as “capillarization” (43).

At histologic analysis, dysplastic nodules and HCC manifest neoarteriogenesis, which takes the appearance of unpaired or non-triadal arteries, that is, arteries not associated with portal vein branches (43,45,46). Vascular endothelial growth factor expres- sion, a marker of angiogenic activity, has been found to increase linearly and paral- lels the development of unpaired arteries (47); it is negligible in regenerative nod- ules, moderate in dysplastic nodules, and strong in HCC (47). Given this progres- sion, serum vascular endothelial growth factor levels in patients with HCC have been explored as markers of tumor activity (48) and as predictors of postoperative tu- mor recurrence and survival (49).

Development of Secondary Liver Malignancy: Metastatic Disease

The formation of a metastasis is initiated by the extravasation of a circulating tumor cell within the liver (Fig 3). After tumor enlargement progresses to a point beyond which angiogenesis is necessary to sustain growth, neovascularization occurs in a stepwise fashion (50); proliferation of sinu- sodial endothelial cells serves as the primary basis for angiogenesis (50–52). In the peritumoral region, sinusoidal capillariza- tion has been found to occur through a process similar to that seen in hepatocarci- nogenesis (50,53). Angiogenesis associated with liver metastases is further assisted by vascular endothelial growth factor expres- sion (53,54). In the presence of metastatic disease, relative increases in hepatic arterial perfusion have been found on a global ba- sis as well (37,38,55–60). The possibility that a tumor-related circulating vasoactive mediator contributes to this global perfu- sion change has been suggested (61), although further supportive work is neces- sary.

Other Physiologic and Iatrogenic Causes of Liver Perfusion Alterations

Although in this review we focus on cirrhosis and malignancy, several other factors may contribute to liver perfusion changes. Of particular note are normal physiologic alterations in blood flow, such as in response to meals (62,63), as well as changes in blood flow that occur as a result of increasingly used minimally invasive tumor therapies, such as radiofrequency ablation, transarterial chemo- embolization, and percutaneous ethanol injection (64–75).

An increase in portal venous blood flow is known to occur in postprandial


goals of perfusion imaging

The primary goal of liver perfusion imaging is to increase the sensitivity and specificity with which liver diseases can be identified. The following requirements for optimal perfusion imaging outline a comprehensive approach to this task: (a) accurate quantification of arterial and portal venous perfusion on a global and regional basis to evaluate both focal and diffuse abnormalities; (b) high spatial resolution to identify perfusion differences in small tumors; (c) high temporal resolution to identify kinetic properties of contrast agents that may vary across tumors; (d) reliable image-based tracer (contrast agent) concentration measurements to facilitate accurate perfusion quantification; (e) robust tracer kinetic modeling methods for accurate derivation of perfusion parameters from enhancement curves, including arterial and portal venous perfusion, mean transit time of the tracer in the liver, and tracer distribution volume, all of which may be abnormal in liver disease; (f) whole-liver imaging to enable tumor surveillance; and (g) compatibility with existing morphologic imaging techniques to enable all imaging to be performed during a single visit.

In the next section, we review the main approaches to liver perfusion imaging, including scintigraphy, US (with Doppler imaging or transit time interrogation), CT, and MR imaging.

techniques of liver perfusion imaging

Perfusion Indices with Scintigraphy

The calculation of liver perfusion indices at flow scintigraphy was initially described in the 1970s and is still used today. In the most commonly described approach, dynamic images are obtained at 1–2-second intervals after the intravenous administration of a radiopharmaceutical agent, such as technetium 99m-labeled tin, sulfur, or albumin colloid or technetium 99m-labeled pertechnetate (35,39,55–57,59,60,79). Liver enhancement is evaluated through a region-of-interest analysis; arterial and portal venous components of liver enhancement are typically distinguished by assuming that peak renal enhancement parallels the onset of the portal venous phase of liver enhancement (35,55–57,59,60,79). By using the slopes of the rise in activity during the arterial phase, designated as $A$, and the portal venous phase, designated as $P$, of liver enhancement, a hepatic arterial perfusion index value is generated and is defined as $A/(A + P)$; this index has been the primary parameter of interest in flow scintigraphy of the liver (35,55–57,59,60,79).

Blood Flow Assessment at US

US with Doppler imaging or transit time interrogation enables flow quantification (blood volume divided by time) as opposed to perfusion measurement (blood volume divided by time divided by tissue volume or weight). To calculate flow rates at Doppler US, mean velocity is multiplied by the cross-sectional area of the vessel. Flow measurement with a transit time flowmeter, a technique that necessitates direct placement of a US probe over the blood vessel of interest, is based on measurement of the difference in time that it takes for an ultrasound beam to pass upstream versus the time that it takes for it to pass downstream through flowing blood; this difference is
proportional to blood flow. Three primary approaches to flow measurements in the liver have been described: intraoperative placement of US probes directly over the blood vessels of interest (80,81), intravascular measurements (82,83), and conventional transabdominal imaging (36,84). Invasive approaches are not as feasible in a surveillance setting. By using transabdominal US with Doppler imaging, flow measurements in the hepatic artery and portal vein may be readily obtained, and a hepatic Doppler perfusion index value, defined as $H/(H + PV)$, may then be computed (36,84). Two primary disadvantages of Doppler US in the context of perfusion imaging include reported intra- and interobserver variability when the Doppler perfusion index (85,86) is measured and the inability to gain regional parenchymal flow measurements; these may be overcome at CT or MR perfusion imaging.

**Perfusion Assessment with CT**

In the early 1990s, Miles et al (37) described liver perfusion imaging at CT by using a dynamic single-section technique in which high-temporal-resolution imaging (3–7 seconds) was performed after rapid intravenous administration of a bolus of iodinated contrast material. Regions of interest were used to generate enhancement curves over the liver, aorta, and spleen (37). Parenchymal enhancement was resolved into arterial and portal venous components by assuming that peak splenic enhancement marked the beginning of dominant portal venous perfusion (37). Hepatic arterial and portal venous perfusion values were calculated by dividing the slopes of the rise in attenuation during the arterial and portal venous phases of liver enhancement, respectively, by peak aortic enhancement (37). A hepatic perfusion index was derived by dividing the calculated arterial perfusion by the sum of arterial and portal perfusion values (37). To better estimate portal perfusion, Blomley et al (38) revised this approach by subtracting arterial phase liver enhancement (modeled after splenic enhancement) from the original liver enhancement curve to derive a “corrected” liver enhancement curve. With this curve, portal venous perfusion was calculated by dividing the slope of the rise in attenuation during the portal phase of liver enhancement by peak portal venous or splenic venous enhancement (38). Calculation of hepatic arterial perfusion was similar to that described by Miles et al (37). These slope-ratio methods of deriving perfusion parameters and indices have dominated the field of CT perfusion imaging (37,38,58,87).

Two groups have applied tracer kinetic modeling techniques to CT perfusion imaging of the liver (31,88–91). One group (31,88,89) used a dual-input one-compartment model that may be summarized by the following equation:

$$dC_i(t)/dt = k_{1a}C_{a}(t) + k_{1p}C_{p}(t) - k_{2}C_i(t),$$

(1)

in which $C_a$, $C_p$, and $C_i$ reflect the tracer (contrast agent) concentration within the liver, hepatic artery, and portal vein, respectively, and $k_{1a}$, $k_{1p}$, and $k_{2}$ reflect arterial and portal venous inflow and liver outflow constants, respectively. Concentrations of the iodinated contrast agents are determined from attenuation measurements that are based on their known linear relationship (92). Regions of interest placed over the aorta, portal vein, and liver parenchyma are used to generate concentration-time enhancement curves (Fig 4), where the aorta is used as a surrogate for the hepatic artery (31,88,89). A fixed delay time for tracer transit from the aorta to intrahepatic hepatic arterial branches is incorporated; an equal delay time also is used to account for transit from the main portal vein to portal venous branches within the hepatic parenchyma (31,88,89). By fitting measured $C_i(t)$ against predicted values, the rate constants, $k_{1a}$, $k_{1p}$, and $k_{2}$, can be estimated to yield the best fit and can then be used to calculate hepatic arterial and portal venous perfusion, mean transit time of tracer through the liver, and tracer distribution volume within the liver (31,88,89).

Cuenod et al (90,91) used a deconvolution technique to evaluate CT perfusion imaging of the liver. With this approach, a transfer function (a range of flow values with each value having a different probability) is substituted for each single-valued inflow and outflow rate. These transfer functions are computed by using a linear deconvolution method and then reduced to derive the same perfusion parameters determined by compartmental modeling techniques (including arterial and portal venous perfusion, mean transit time of the tracer through the liver, and tracer distribution volume in the liver).

**Perfusion Assessment with MR Imaging**

To date, reports of liver perfusion at MR imaging have been limited and vary considerably. In 1999, Scharf et al (93) reported use of a single-section T1-weighted gradient-echo technique at 1.0 T to perform gadolinium-enhanced perfusion imaging with a 2-second temporal resolution in nine pigs prior to and after partial portal vein occlusion. Intrahepatic thermal diffusion probes were used as the standards of reference for perfusion measurement (93). The relationship between signal intensity and tissue concentration of contrast material was assumed to be linear, and a single-input single-compartment model was used, which prevented delineation of arterial and portal venous contributions (93). The MR imaging–based liver perfusion after partial portal vein occlusion decreased from 117 mL $\cdot$ min $^{-1} \cdot$ 100 g $^{-1} \pm 42$ (standard deviation) to 48 mL $\cdot$ min $^{-1} \cdot$ 100 g $^{-1} \pm 22$; thermal diffusion probes measured a decrease in perfusion from an average of 78 mL $\cdot$ min $^{-1} \cdot$ 100 g $^{-1} \pm 7$ to 47 mL $\cdot$ min $^{-1} \cdot$ 100 g $^{-1} \pm 15$; a statistically significant correlation was observed between MR imaging–based liver perfusion values and thermal diffusion probe measurements ($P < .01$) (93).

Jackson et al (94) used three-dimensional dynamic contrast-enhanced perfusion MR imaging in humans to investigate lesion-specific permeability mapping. The authors were able to attain 4.1-second temporal resolution by using a 128 $\times$ 128 $\times$ 25 matrix (94). Contrast material concentration was determined by using a T1 mapping sequence (94). Lesion-specific perfusion parameters were calculated by using a pharmacokinetic model that characterized endothelial permeability and relative blood volume (94). In the input function of the pharmacokinetic model used, only the hepatic arterial supply was considered and the portal vein supply was ignored; therefore, results of evaluation of tissue that received contributions from both the hepatic artery and the portal vein, including normal liver parenchyma, were unreliable.

Materne et al (95) reported single-section high-temporal-resolution liver perfusion imaging in rabbits by using dynamic T1-weighted gradient-echo MR imaging. Tissue tracer concentration was estimated with empirical determination of the relationship between signal intensity and T1 values with the pulse sequence used (95). Region-of-interest analyses over the aorta, portal vein, and liver parenchyma enabled generation of concentration-time curves, which were fitted to a dual-input single-compartment model for liver perfusion (Eq [1]). Arterial and portal inflow and outflow rate constants were determined by
using the model and were used to calculate arterial perfusion (23 mL·min⁻¹·100 mL⁻¹ ± 13) and portal venous perfusion (84 mL·min⁻¹·100 mL⁻¹ ± 32) (95). The distribution volume of contrast material (13% ± 3.7) and the mean transit time (8.9 second ± 4.1) were also calculated. All values correlated well with results obtained by using microspheres (95). This group subsequently used this method of perfusion MR imaging to evaluate perfusion parameters in rabbits with and without cirrhosis (96) and in humans (32), as discussed in detail next in the context of perfusion imaging in cirrhosis.

PERFUSION IMAGING IN CIRRHOSIS

Relative increases in arterial versus portal venous flow in cirrhosis, as predicted by the hepatic arterial buffer response, have been demonstrated at flow scintigraphy, Doppler US, and CT perfusion imaging (31,35–39). At flow scintigraphy, although hepatic perfusion index values have correlated well with severity of cirrhosis, they have not been shown to be helpful in the prediction of major complications of cirrhosis, such as ascites, variceal bleeding, and death (35). By using transabdominal Doppler US, Leen et al (36) reported an increase in the hepatic Doppler perfusion index in patients with cirrhosis.

At CT perfusion imaging, Miles et al (37) and Blomley et al (38) reported increased arterial perfusion in patients with cirrhosis. Blomley et al (38) reported a value of 25 mL·min⁻¹·100 mL⁻¹, and Miles et al (37) reported that of 36 mL·min⁻¹·100 mL⁻¹; in healthy control groups, Miles et al (37) reported a value of 17 mL·min⁻¹·100 mL⁻¹, and Blomley et al (38) reported that of 19 mL·min⁻¹·100 mL⁻¹. These researchers also reported diminished portal perfusion in patients with cirrhosis. Miles et al (37) reported a value of 17 mL·min⁻¹·100 mL⁻¹, and Blomley et al (38) reported that of 43 mL·min⁻¹·100 mL⁻¹; in healthy control groups, Miles et al (37) reported a value of 34 mL·min⁻¹·100 mL⁻¹, and Blomley et al (38) reported that of 93 mL·min⁻¹·100 mL⁻¹. Calculation of perfusion parameters was based on the slope-ratio methods described by Miles et al (37) and Blomley et al (38).

When Van Beers et al (31) used CT perfusion imaging with dual-input single-compartment modeling (Eq [1]), they found increases in fractional arterial perfusion and mean transit time in a group with cirrhosis (41% ± 27 and 51 second ± 79, respectively), compared with values in healthy controls (17% ± 16 and 16 second ± 5, respectively); however, a...
statistically significant difference in distribution volume between the two groups was not observed. Global liver perfusion was lower in the group with cirrhosis (0.67 mL · min⁻¹ · mL⁻¹ ± 0.23) compared with that in healthy controls (1.08 mL · min⁻¹ · mL⁻¹ ± 0.34) (31). Increased mean transit time of contrast material through the liver in patients with cirrhosis was attributable to decreased motility of standard contrast materials (low molecular weight) in the extravascular space of Disse because of its collagenization (31). The unchanged distribution volume of contrast material was attributed to continued passage of small molecules into the space of Disse, despite changes of cirrhosis (31).

By using a similar CT perfusion imaging technique with dual-input single-compartment modeling, the same group demonstrated decreased mean transit time and distribution volume with use of a higher-molecular-weight contrast agent compared with a lower-molecular-weight agent in rabbits with hepatic fibrosis (89). These findings were attributed to the progressive restriction of high-molecular-weight molecules to the intravascular space in cirrhosis (89), as previously reported during assessment of the hepatic microcirculation of albumin in rats with cirrhosis (97). This work was followed by use of a perfusion MR imaging technique with dual-input single-compartment modeling in normal rabbits and rabbits with liver fibrosis (96). Van Beers et al (96) reported decreased distribution volume with two high-molecular-weight contrast materials and increased mean transit time for a lower-molecular-weight contrast material in rabbits with liver fibrosis. The clearance of a xenobiotic agent, indocyanine green, correlated with the distribution volume of both high-molecular-weight contrast materials studied, and the collagen content of the liver was inversely related to the distribution volume of the highest-molecular-weight contrast material studied (96). More recently, this group reported increased fractional arterial perfusion and decreased mean transit time when they evaluated humans with cirrhosis by using dual-input single-compartment perfusion MR imaging with a standard low-molecular-weight contrast material (32).

The limited spatial resolution of flow scintigraphy restricts its current applicability. Doppler US is restricted by its reliance on measurements of global flow as opposed to global and regional perfusion. One major limitation of CT perfusion imaging with slope-ratio methods is that the mean transit time and distribution volume of contrast material in the liver, parameters found to be altered in cirrhosis by using compartmental modeling techniques (31,32,89,96), cannot be assessed. Disadvantages of all methods of CT perfusion imaging include the required use of iodinated contrast material and its attendant risks of allergic reactions and nephrotoxicity (98,99), with the latter of major concern in the setting of end-stage cirrhosis because these patients are at risk for hepatorenal syndrome (100), and the radiation doses associated with dynamic CT imaging. The latter will be discussed in detail next in the context of HCC surveillance. Perfusion MR imaging studies, while promising, need to be validated further in humans.

**PERFUSION IMAGING FOR DETECTION OF HCC**

To date, true perfusion imaging techniques have not been used for the surveillance of HCC or dysplastic nodules. This is because optimal HCC surveillance necessitates whole-liver perfusion imaging with high spatial resolution to detect and characterize small (<1-cm) lesions. Conventional flow scintigraphic techniques and perfusion positron emission tomographic imaging (101–103) have inadequate spatial resolution for detection of regional perfusion abnormalities. Flow measurements at Doppler US do not enable characterization of regional flow abnormalities.

Whole-liver CT imaging has the potential to provide both high-temporal-resolution and high-spatial-resolution imaging of the entire liver for the detection of HCC; however, the radiation doses must be considered. By using a reduced-dose whole-liver imaging technique (120 kVp, 100 mAs, 5-mm collimation), the radiation dose to the liver with a multi-detector row scanner (Volume Zoom; Siemens, Forchheim, Germany) is approximately 2.8 mSv for a man and 3.4 mSv for a woman for a single scan, as indicated with commercially available software (WinDose; Wellhofer Dosimetry, Schwarzenbruck, Germany). With the assumption that 15–30 3-second whole-liver scans are obtained, the dose equivalent to the liver would be 42–84 mSv for men and 51–102 mSv for women. In comparison, a three-phase liver study performed with 120 kVp and 165 mAs would result in a dose equivalent to the liver of 13.8 mSv for men and 16.8 mSv for women. Thus, a whole-liver CT perfusion study would result in radiation doses that are approximately three to six times greater than those of a routine diagnostic CT examination. A dedicated analysis of the risks versus the benefits of whole-liver CT perfusion imaging may provide greater insight into the significance of this increased dose in the care of specific patient groups.

Perfusion MR imaging represents a promising technique for HCC surveillance. The closest technique to perfusion MR imaging has been use of a double-arterial phase MR imaging technique enabled by a rapid parallel imaging method (termed sensitivity encoding, or SENSE); one group reported sensitivity values of 91.7% (33 of 36 lesions) for the detection of HCC and 78.6% (11 of 14 lesions) for the detection of HCC of 1 cm or smaller compared with sensitivity values of 76.3% (29 of 38 lesions) and 27.3% (three of 11 lesions), respectively, by using a protocol that included a single arterial phase (104). These findings suggest the potential of high-temporal-resolution perfusion imaging to improve detection of small HCC.

**PERFUSION IMAGING FOR METASTATIC DISEASE**

In patients with known metastatic disease, increased arterial perfusion has been shown by using CT perfusion imaging with the slope-ratio analytic methods described by Miles et al (37) and Blomley et al (38). Blomley et al (38) reported a value of 43 mL · min⁻¹ · 100 mL⁻¹, and Miles et al (37) reported that of 50 mL · min⁻¹ · 100 mL⁻¹ in patients with known metastatic disease versus values of 19 mL · min⁻¹ · 100 mL⁻¹ (38) and 17 mL · min⁻¹ · 100 mL⁻¹ (37), respectively, in healthy control groups. Leggett et al (58) also demonstrated increased arterial perfusion (>25 mL · min⁻¹ · 100 mL⁻¹) in 82% (nine of 11 patients) of a cohort of patients with overt colorectal metastases examined by using CT perfusion imaging with slope-ratio analytic methods. Similarly, at flow scintigraphy, the relationship between an elevated hepatic perfusion index value and overt metastatic disease has been well established (55–57,59,60). For example, Perkins et al (57) determined a hepatic perfusion index threshold value of 0.37; at values above that level, metastatic disease should be suspected.

The detection of micrometastatic or occult metastatic disease with perfusion imaging has also been studied (56,84,90). By
using Doppler US, Leen et al (84) showed that the 5-year survival of patients after potentially curative colon surgery for colorectal carcinoma was 91% in patients with normal hepatic Doppler perfusion index values and 29% in patients with abnormal hepatic Doppler perfusion index values. By using CT perfusion imaging with a deconvolution technique for data analysis, Cuevod et al (90) reported decreased portal perfusion and increased mean transit time in rats with occult liver metastases; arterial perfusion was unchanged. The authors hypothesized that arterial perfusion may be increased in humans with occult metastases secondary to a hepatic arterial buffer response; this response may not have been detectable in rats because of their small baseline arterial contribution to liver perfusion (90).

FUTURE CHALLENGES OF PERFUSION IMAGING

Improvements in perfusion imaging will stem largely from technical advances. CT perfusion imaging with multi-detector row technology has the potential to provide high-spatial-resolution and high-temporal-resolution whole-liver perfu-
sion imaging. Necessary methods for radiation dose reduction are in the early stages of development. Perfusion MR imaging has the potential to enable dynamic whole-liver three-dimensional imaging without the risks of radiation and, therefore, is likely the most promising future approach for perfusion imaging. Effective implementation of perfusion MR imaging, however, requires exploration of optimal techniques for faster higher-resolution whole-liver imaging and subsequent image processing. Moreover, estimation of tissue contrast material concentration at MR imaging needs further work to optimize quantitative perfusion measurements. Finally, validation of existing methods of liver perfusion imaging and perfusion quantification is necessary to determine which techniques are most accurate. The next section focuses on the challenges that are related to perfusion MR imaging at this time.

**Improved Spatial and Temporal Resolution at Perfusion MR Imaging**

Strategies that are under development to improve spatial and temporal resolution include improvements in hardware to reduce repetition times, undersampling strategies (105), improved interpolation algorithms, and new parallel imaging methods such as simultaneous acquisition of spatial harmonics (or SMASH) (106) and sensitivity encoding (104), with new coil designs to optimize their implementation. The aim of these strategies should be to obtain volumetric imaging of the liver with isotropic pixels (of approximately 2 mm or less in all three dimensions) in a time frame of 3 seconds or less. We have implemented a fast interpolated three-dimensional gradient-echo technique to perform coronal whole-liver imaging in 3.35 seconds with a pixel size of $3.1 \times 1.8 \times 5.0$ mm (interpolated section thickness) (107) (Fig 5) and transverse whole-liver imaging in 3.22 seconds with a pixel size of $3.1 \times 1.8 \times 5.0$ mm (interpolated section thickness) (Fig 6).

**Quantification of Concentration of Gadolinium-based Contrast Agents**

Unlike CT, in MR imaging the relationship between the concentration of gadolinium-based contrast agents and signal intensity is nonlinear and complex. Although this relationship may be nearly linear with specific imaging conditions (primarily related to magnetic field strength, sequences employed, and true tissue concentration of the gadolinium-based agent) (108), more robust techniques for the quantification of gadolinium-based contrast agents have been reported (109,110). One such method used in the context of contrast-enhanced MR imaging of the kidneys relies on the additivity of T1 relaxivity and requires
radiation exposure. Perfusion MR imaging permits sequential whole-liver imaging without radiation. Techniques that enable improved spatial and temporal resolution and accurate contrast material quantification, however, need to be developed. Future efforts to establish whole-liver perfusion imaging as a clinically feasible and reliable technique may have profound implications for several patient populations. Thus, although perfusion imaging remains in the early stages of development, through continued implementation and exploration of advanced imaging technologies, its clinical value in imaging of the liver should begin to unfold in the near future.

Acknowledgment: We gratefully acknowledge the assistance of Martha Helmers, BS, in the creation of the diagrams shown in this review.

Figure 7. Sample color segmentation demonstrated with representative coronal and transverse images from dynamic three-dimensional gradient-echo whole-liver perfusion MR imaging studies (2.3/0.8, 9° flip angle) in a 39-year-old man without cirrhosis (transverse and coronal imaging studies were performed independently). Semiautomated segmentation algorithms enable efficient color-based discrimination of aorta (red), portal vein and its branches (green), liver parenchyma (blue), and hepatic veins and inferior vena cava (dark yellow). Region-of-interest analyses of aortic, portal venous, and liver parenchymal enhancement on the basis of semiautomated segmentation algorithms subsequently can be used for compartmental modeling.
References


70. Yu JS, Kim KW, Park MS, Yoon SW. Bilateral duct injuries leading to portal vein obliteration after transcatheter arterial chemoembolization in the liver: CT findings and initial observations. Radiology 2001; 221:429–436.


