Next-generation networks aim to provide performance guarantees to real-time interactive services that require timely and cost-efficient packet delivery. In this context, the goal is to reliably deliver packets with strict deadlines imposed by the application while minimizing overall resource allocation cost. A large body of work has leveraged stochastic optimization techniques to design efficient dynamic routing and scheduling solutions under average delay constraints; however, these methods fall short when faced with strict per-packet delay requirements. We work on the minimum-cost delay-constrained network control problem as a constrained Markov decision process and utilize constrained deep reinforcement learning (CDRL) techniques to effectively minimize total resource allocation cost while maintaining timely throughput above a target reliability level.
Please refer to Ozan’s website about more information and related papers.