[1] A. Dutrifoy, T. Hmidi, Incompressible Limit of solutions of the two-dimensional compressible Euler system with degenerating intial data.
Comm. Pure Appl. Math. 57 (2004) no 9, 1159–1177.
[2] T. Hmidi, S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited.
Int. Math. Res. Not. (2005) no. 46, 2815–2828.
[3] T. Hmidi, Régularité höldérienne des poches de tourbillon visqueuses.
J. Math. Pures Appl. (9) 84 (2005), no. 11, 1455–1495.
[4] H. Abidi, T. Hmidi, Un résultat de décroissance des poches de tourbillon axisymétriques.
Annales de la faculté des Sciences de Toulouse (6) 14 (2005), no. 4, 563–592.
[5] T. Hmidi, Poches de tourbillon singulières dans un fluide faiblement visqueux.
Rev. Mat. Iberoamericana 22, 2 (2006), 489–543.
[6] T. Hmidi, S. Keraani, Remarks on the blowup for the L2-critical nonlinear Schrödinger equations.
SIAM J. Math. Anal. 38 (2006), no. 4, 1035–1047.
[7] H. Abidi, T. Hmidi, Résultats d’existence dans des espaces critiques pour le système de la MHD inhomogène.
Ann. Math. Blaise Pascal 14 (2007), 103–148.
[8] H. Abidi, T. Hmidi, On the global well-posedness for Boussinesq system.
J. Differential. Equa. 233 1 (2007) 199–220.
[9] T. Hmidi, S. Keraani, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity.
Adv. Differential Equations 12 (2007), no. 4, 461–480.
[10] T. Hmidi, S. Keraani, Inviscid limit for the two-dimensional Navier-Stokes equation in a critical Besov space.
Asymptot. Anal. 53 (2007), no. 3, 125–138.
[11] T. Hmidi, S. Keraani, Incompressible viscous flows in borderline Besov spaces.
Arch. for Rational Mech. and Analysis 189 (2008), no 2, 283–300.
[12] T. Hmidi, S. Keraani, On the global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces.
Advances in Mathematics, 214 (2007), no. 2, 618–638.
[13] H. Abidi, T. Hmidi, On the global well-posedness of the critical quasi-geostrophic equation.
SIAM J. Math. Anal. 40 (2008), no. 1, 167–185. Click here for the file
[14] T. Hmidi, S. Keraani, On the global well-posedness of the two-dimensional Boussinesq system with a zero viscosity.
Indiana Univ. Math. J. 58 (2009) no. 4, 1591–1618.
[15] H. Abidi, T. Hmidi, S. Keraani, On the global existence for the axisymetric Euler equations.
Mathematische Annalen 347, 1 (2010) 15–41.
[16] T. Hmidi, M. Zerguine, Inviscid limit for axisymmetric Navier-Stokes system.
Differential and Integral Equations, 22 (2009) no 11-12, 1223–1246.
[17] T. Hmidi, M. Zerguine, On the global well-posedness of the Euler-Boussinesq system with fractional dissipation.
Physica D : Nonlinear Phenomena, 239 (2010), no 15, 1387-1401.
[18] T. Hmidi, A. Mantile, F. Nier, Time-dependent delta-interactions for 1D Schrödinger Hamiltonians.
Math. Phys., Anal. Geom. 13 (2010) 83–103.
[19] H. Abidi, T. Hmidi, S. Keraani, On the global regularity of axisymmetric Navier-Stokes- Boussinesq system,
Discrete Contin. Dyn. Syst. 29 ( 2011), no 3, 737-756.
[20] T. Hmidi, On a maximum principle and its application to logarithmically critical Boussinesq system.
Analysis and PDE, 4-2 (2011) 247–284
[21] T. Hmidi, S. Keraani, F. Rousset, Global well-posedness for Euler-Boussinesq system with critical dissipation.
J. Differential Equations 249 (2010), no. 9, 2147–2174.
[22] T. Hmidi, S. Keraani, F. Rousset, Global well-posedness for a Boussinesq- Navier-Stokes System with critical dissipation.
Communications in Partial Di erential Equations, 36 (2011), no 3, 420 – 445.
[23] T. Hmidi, F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data.
Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 5, 1227–1246.
[24] T. Hmidi, F. Rousset, Global well-posedness for the Euler-Boussinesq system with axisymmetric data.
J. Functional Analysis, 260 (2011), no. 3, 745–796.
[25] N. Demni, T. Hmidi, Spectral distribution of the free unitary Brownian motion,
Séminaire de Proba. XLIV, 191–206, Lecture Notes in Math., 2046, Springer.
[26] T. Hmidi, Low Mach number limit for the isentropic Euler system with axisymmetric initial data,
Journal of the Institute of Mathematics of Jussieu, 12 (2013) 02, 335–389.
[27] T. Hmidi, S. Sulaiman, Incompressible limit for the 2D isentropic Euler system with critical initial data,
Proceedings of the Royal Society of Edinburgh.
[28] N. Demni, T. Hamdi, T. Hmidi, On the spectral mesure of a free Jacobi process,
Indiana Univ. Math. J. , 61 (2012), no. 3, 1351–1368.
[29] T. Hmidi, J. Mateu, J.Verdera, Boundary regularity of rotating vortex patches,
Arch. for Rational Mech. and Analysis, 209 (2013), no. 1, 171–208
[30] T. Hmidi, M. Zerguine, Vortex patch problem for stratified Euler equations.
Commun. Math.Sci. 12 (2014), no. 8, 1541–1563.
[31] T. Hmidi, On the Yudovich solutions for the ideal MHD equations.
Nonlinearity 27 (2014), no. 12, 3117–3158.
[32] N. Demni, T. Hmidi, Spectral distribution of the free Jacobi process associated with one projection.
Colloq. Math. 137 (2014), no. 2, 271–296.
[33] Z. Hassainia, T. Hmidi, On the inviscid Boussinesq system with rough initial data.
J. Math. Anal. Appl. 430 (2015), no. 2, 777–809.
[34] T. Hmidi, J. Mateu, J. Verdera, On rotating doubly connected vortices.
J. Differential Equations 258 (2015), no. 4, 1395–1429.
[35] F. Bernicot, T. Hmidi, On the global well-posedness for the 2d Euler equations with unbounded vorticity.
Dyn. Partial Di er. Equ., 12 (2015), no2. 127 – 155.
[36] Z. Hassainia, T. Hmidi, On the V-states for the generalized quasi-geostrophic equations.
Comm. Math. Phys. 337 (2015), no. 1, 321–377.
[37] T. Hmidi, On the trivial solutions for the rotating patch model.
J. Evol. Equ. 15 (2015), no.4, 801–816.
[38] F. de la Hoz, Z. Hassainia, T. Hmidi, Doubly Connected V-States for the Generalized Surface Quasi-Geostrophic Equations.
Arch. Ration. Mech. Anal. 220 (2016), no. 3, 1209–1281
[39] T. Hmidi, J. Mateu, Bifurcation of rotating patches from Kirchhoff vortices.
Discrete Contin. Dyn. Syst. 36 (2016) no. 10, 5401–5422.
[40] T. Hmidi, J. Mateu, Degenerate bifurcation of the rotating patches.
Adv. in Math. 302 (2016) 799-850.
[41] F. de la Hoz, Z. Hassainia, T. Hmidi, J. Mateu, An analytical and numerical study of steady patches in the disc.
Anal. and PDE, 9 (2016), no 7, 1609–1670.
[42] F. de la Hoz, T. Hmidi, J. Mateu, J. Verdera, Doubly-connected V-states for the planar Euler equations.
SIAM J. Math. Anal. 48 (2016), no. 3, 1892–1928.
[43] T. Hmidi, J. Mateu, Existence of corotating and counter-rotating vortex pairs for active scalar equations.
Comm. Math. Phys, 350 (2017) 2, 699–747
[44] T. Hmidi, D. Li : Small implies regularity. Dyn. Partial Di er. Equ. 14 (2017), no. 1, 1–4.
[45] T. Hmidi, C. Renault, Existence of small loops in a bifurcation diagram near degenerate eigenvalues.
Nonlinearity 30 (2017), no. 10, 3821–3852.
[46] D. G. Dritschel, T. Hmidi, C. Renault, Imperfect bifurcation for the quasi-geostrophic shallowwaterequations.
Arch. Ration. Mech. Anal. 231 (2019), no. 3, 1853–1915.
[47] T. Hmidi, D. Li, Dynamics of one fold symmetric patches for the aggregation equation and collapse to singular measure.
Anal. PDE 12 (2019), no. 8, 2003–2065
[48] C. Garcia, T. Hmidi, J. Soler, Non uniform rotating vortices and periodic orbits for the two dimensional Euler Equations,
Arch. Ration. Mech. Anal. 238 (2020), no. 2, 929–1085.
[49] Z. Hassainia, T. Hmidi, Steady asymmetric vortex pairs for Euler equations.
Discrete Contin. Dyn. Syst. 41 (2021), no. 4, 1939–1969.
[50] C. Garcia, T. Hmid, J. Mateu, Time periodic solutions for 3D quasi-geostrophic model.
Comm. Math. Phys. 390 (2022), no. 2, 617–756.
[51] K. Ammari, T. Hmidi, Ergodicity e ects on transport-di usion equations with localized damping,
Dyn. Partial Di er. Equ. 18 (2021), no. 1, 1–10.
[52] T. Hmidi, E. Roulley, Time quasi-periodic vortex patches for quasi-geostrophic shallow-water equations.
To appear in Mémoires de la SMF.
[53] Z. Hassainia, T. Hmidi, N. Masmoudi, KAM theory for active scalar equations.
T0 appear in Memoires of AMS.
[54] T. Hmidi, H. Houamed, M. Zerguine, Rigidity aspects of singular patches in stratified flows.
Tunis. J. Math. 4 (2022), no. 3, 465–557.
[55] T. Hmidi, L. Xue, Z. Xue, Emergence of time periodic solutions for the generalized surface quasi-geostrophic equation in the disc.
J. Funct. Anal. 285 (2023), no. 10, Paper No. 110142,61 pp.
[56] C. García, T. Hmidi, J. Mateu, Time periodic doubly connected solutions for the 3D quasigeostrophic model.
SIAM J. Math. Anal. 55 (2023), no. 6, 6133–6193.
[57] C. García, T. Hmidi, J. Mateu, Time Periodic Solutions Close to Localized Radial Monotone Profiles for the 2D Euler Equations. Ann. PDE 10 (2024), no. 1, Paper No. 1.
[58] T. Hmidi, Z. Hassainia, E. Roulley, Invariant KAM tori around annular vortex patches for 2D Euler equations,
To apper in Comm. Math. Phys.
[59] Taoufik Hmidi, Liutang Xue, Zhilong Xue, Unified theory on V-states structures for active scalar equations.
arXiv :2312.02874.
[60] Zineb Hassainia, Taoufik Hmidi, Nader Masmoudi, Rigorous derivation of the leapfrogging motion for planar Euler equations. arXiv :2311.15765
[61] Taoufik Hmidi, Haroune Houamed, Emeric Roulley, Mohamed Zerguine. Uniformly rotating vortices for the lake equation. arXiv :2401.142734
[62] Zineb Hassainia, Taoufik Hmidi, Emeric Roulley, Desingularization of time-periodic vortex motion in bounded domains via KAM tools. arXiv:2408.16671